Consecuencias ecológicas de los escapes accidentales de la acuicultura: una visión general de los riesgos, las estrategias de remediación y las lagunas de conocimiento en el sector de la acuicultura de la India y los países ribereños de África Oriental

Autores/as

  • Mahadevan Harikrishnan School of Industrial Fisheries, Cochin University of Science and Technology, P.O. Box 682022, Kerala, India
  • Fredrick Juma Syanya School of Industrial Fisheries, Cochin University of Science and Technology, P.O. Box 682022, Kerala, India - Government of Kenya, Ministry of Mining Blue Economy and Maritime Affairs, Kenya Fisheries Service, Kenya https://orcid.org/0000-0001-8728-8614
  • A. R. Nikhila Khanna School of Industrial Fisheries, Cochin University of Science and Technology, P.O. Box 682022, Kerala, India
  • Paul Mumina Government of Kenya, Ministry of Mining Blue Economy and Maritime Affairs, Kenya Fisheries Service, Kenya https://orcid.org/0009-0002-7024-7191
  • Wilson M. Mathia Government of Kenya, Ministry of Agriculture Livestock and Fisheries, Department of Agriculture Livestock and Fisheries, Vihiga County Government, Kenya https://orcid.org/0000-0002-3986-6384

DOI:

https://doi.org/10.47193/mafis.3742024010709

Palabras clave:

Escapes de la acuicultura, especies invasoras, política pesquera, Biodiversidad, ecosistema acuático, acuicultura sostenible

Resumen

La expansión global de la acuicultura ha impulsado importantes avances tecnológicos, incluidos los raceways, Sistemas Integrados Multitróficos en Acuicultura (IMTA) y jaulas marinas en alta mar. Sin embargo, los escapes de la acuicultura clandestina representan una grave amenaza para la biodiversidad acuática, actuando como una potencial bomba de tiempo para todo el ecosistema. Abordar esta cuestión requiere una comprensión integral del impacto de las fugas involuntarias en los ecosistemas acuáticos, particularmente en la India y los países ribereños de África Oriental (Kenia, Uganda y Tanzania). Utilizando un diseño de investigación exploratoria basado en varias fuentes evaluadas por pares, este estudio describe el crecimiento dinámico de la acuicultura en estos países, identifica incidentes de escape de alto impacto y correlaciona riesgos y soluciones con casos globales, especialmente en regiones como Noruega, Escocia, Irlanda, Colombia y Estados Unidos, en donde se han reportado incidentes graves de escapes de la acuicultura. La investigación categoriza las tendencias de desarrollo de la acuicultura, analiza los mecanismos del impacto de los escapes, propone soluciones, evalúa métodos y la fuerza inferencial, y destaca las lagunas existentes en la literatura. El estudio reveló complejos cambios ecológicos causados por la fuga de especies de peces invasoras no nativas provenientes de la acuicultura, que afectan la predación, la competencia y la diversidad genética. Los peces que se escapan de las instalaciones acuícolas representan una amenaza significativa para la biodiversidad acuática, especialmente en las regiones de estudio. El creciente riesgo de fugas involuntarias se puso de relieve en la India y en tres países de África Oriental. Para mitigar este hecho, el estudio propone integrar la gestión de los escapes en los sistemas pesqueros nacionales, modificar las leyes pesqueras, responsabilizar a los piscicultores por las fallas del sistema de cultivo y desarrollar regulaciones integrales para las especies exóticas en la acuicultura en las regiones de estudio. Se recomienda estandarizar la planificación de las instalaciones de acuicultura e implementar planes de emergencia, capacitación, movilización local y más investigaciones sobre los umbrales de impacto de los escapes de especies cultivadas. La educación ecológica en las comunidades acuícolas y el reconocimiento del papel de los científicos transnacionales son cruciales para la difusión del conocimiento. Se necesita una acción gubernamental urgente para abordar los escapes no reportados de la acuicultura, evitando una mayor degradación de los ecosistemas y garantizando la sostenibilidad de la acuicultura global.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Biografía del autor/a

Mahadevan Harikrishnan, School of Industrial Fisheries, Cochin University of Science and Technology, P.O. Box 682022, Kerala, India

A. R. Nikhila Khanna, School of Industrial Fisheries, Cochin University of Science and Technology, P.O. Box 682022, Kerala, India

Citas

Abd Hamid M, Md Sah, ASR, Idris I, Mohd Nor SA, Mansor M. 2023. Impacts of tilapia aquaculture on native fish diversity at an ecologically important reservoir. PeerJ. 11: e15986. DOI: https://doi.org/10.7717/peerj.15986

Abwao J, Jung’a, Barasa JE, Kyule D, Opiyo M, Awuor JF, Ogello E, Munguti JM, Keya GA. 2023. Selective breeding of Nile tilapia, Oreochromis niloticus: a strategy for increased genetic diversity and sustainable development of aquaculture in Kenya. J Appl Aquacult. 35 (2): 237-256. DOI: https://doi.org/10.1080/10454438.2021.1958728

Adeleke B, Robertson-Andersson D, Moodley G, Taylor S. 2021. Aquaculture in Africa: a comparative review of Egypt, Nigeria, and Uganda vis-à-vis South Africa. Rev Fish Sci Aquacult. 29 (2): 167-197. DOI: https://doi.org/10.1080/23308249.2020.1795615

Akena PR, Mwesigwa D. 2021. Ideas matter: using aquaculture technology to enhance smart farming in Lira city, mid-north Uganda. Int J Interdiscip Res Innov. 9: 51-58. http://ir.lirauni.ac.ug/xmlui/handle/123456789/277.

Akoll P, Mwanja WW. 2012. Fish health status, research and management in East Africa: past and present. Afr J Aquat Sci. 37 (2): 117-129. DOI: https://doi.org/10.2989/16085914.2012.694628

Amankwah A, Quagrainie KK, Preckel PV. 2018. Impact of aquaculture feed technology on fish income and poverty in Kenya. Aquacult Econ Manage. 22 (4): 410-430. DOI: https://doi.org/10.1080/13657305.2017.1413689

Arechavala-Lopez P, Sanchez-Jerez P, Bayle-Sempere JT, Uglem I, Mladineo I. 2013. Reared fish, farmed escapees and wild fish stocks-a triangle of pathogen transmission of concern to Mediterranean aquaculture management. Aquacult Environ Interact. 3 (2): 153-161. DOI: https://doi.org/10.3354/AEI00060

Arechavala-Lopez P, Uglem I, Fernandez-Jover D, Bayle-Sempere JT, Sanchez-Jerez P. 2012. Post-escape dispersion of farmed seabream (Sparus aurata L.) and recaptures by local fisheries in the Western Mediterranean Sea. Fish Res. 121-122: 126-135. DOI: https://doi.org/10.1016/j.fishres.2012.02.003

Arumugam M, Jayaraman S, Sridhar A, Venkatasamy V, Brown PB, Abdul Kari Z, Tellez-Isaias G, Ramasamy T. 2023. Recent advances in tilapia production for sustainable developments in Indian aquaculture and its economic benefits. Fishes. 8 (4): 176. DOI: https://doi.org/10.3390/fishes8040176

Aswathy N, Imelda J. 2019. Economic feasibility and resource use efficiency of coastal cage fish farming in Kerala. Econ Aff. 64 (1): 151-155. DOI: https://doi.org/10.30954/0424-2513.1.2019.19

Aura CM, Musa S, Yongo E, Okechi JK, Njiru JM, Ogari Z, Wanyama R, Charo-Karisa H, Mbugua H, Kidera S, et al. 2018. Integration of mapping and socio-economic status of cage culture: towards balancing lake-use and culture fisheries in Lake Victoria, Kenya. Aquacult Res. 49 (1): 532-545. DOI: https://doi.org/10.1111/are.13484

Aura CM, Nyamweya CS, Owili M, Gichuru N, Kundu R, Njiru JM, Ntiba MJ. 2020. Checking the pulse of the major commercial fisheries of Lake Victoria Kenya, for sustainable management. Fish Manage Ecol. 27 (4): 314-324. DOI: https://doi.org/10.1111/fme.12414

Banadda EN, Kansiime F, Kigobe M, Kizza M, Nhapi I. 2009. Landuse-based nonpoint source pollution: a threat to water quality in Murchison Bay, Uganda. Water Policy. 11 (1): 94-105. DOI: https://doi.org/10.2166/wp.2009.106

Bartley DM, Halwart M. 2017. Aquatic genetic resources. In: Hunter D, Guarino L, Spillane C, McKeown PC, editors. Routledge handbook of agricultural biodiversity. Routledge. p. 86-98. DOI: https://doi.org/10.4324/9781317753285-6

Basavaraja N. 2015. Recent developments in Indian aquaculture. Fish Chim. 34 (12): 24-28.

Bbole I, Zhao JL, Katongo C, Tang SJ. 2023. Escapes from aquaculture facilities in freshwater ecosystems; conservation concerns for Oreochromis tanganicae, an endemic species of Lake Tanganyika. Egypt J Aquat Res. 49 (4): 542-548. DOI: https://doi.org/10.1016/j.ejar.2023.10.002

Benjamin JR, Connolly PJ, Romine JG, Perry RM. 2013. Potential effects of changes in temperature and food resources on life history trajectories of juvenile Oncorhynchus mykiss. Trans Am Fish Soc. 142 (1): 208-220. DOI: https://doi.org/10.1080/00028487.2012.728162

Bentsen HB, Olesen I. 2002. Designing aquaculture mass selection programs to avoid high inbreeding rates. Aquaculture. 204 (3-4): 349-359. DOI: https://doi.org/10.1016/S0044-8486(01)00846-8

Berg H, Mulokozi D, Udikas L. 2021. A GIS assessment of the suitability of tilapia and Clarias pond farming in Tanzania. ISPRS Int J Geoinf. 10 (5): 354. DOI: https://doi.org/10.3390/ijgi10050354

Bianco PG, Ketmaier V. 2015. Nature and status of freshwater and estuarine fisheries in Italy and Western Balkans. In: Craig JF, editor. Freshwater fisheries ecology. Willey. p. 283-291. DOI: https://doi.org/10.1002/9781118394380.ch24

Bijoy VM, Sabu S, Harikrishnan M. 2018. Fish meal replacement with squilla (Oratosquilla nepa, Latreille) silage in a practical diet for the juvenile giant freshwater prawn, Macrobrachium rosenbergii de man, 1879. Aquacult Int. 26 (5): 1229-1245. DOI: https://doi.org/10.1007/S10499-018-0280-0

Bolman B, Duijn AP van, Rutaisire J, Rurangwa E, Heijden PGM van der. 2018. Review and analysis of small-scale aquaculture production in East Africa. Part 4. Uganda. Wageningen: Wageningen Centre for Development Innovation. Report WCDI-18-021. 54 p.

Branch GM, Nina Steffani C. 2004. Can we predict the effects of alien species? A case-history of the invasion of South Africa by Mytilus galloprovincialis (Lamarck). J Exp Mar Biol Ecol. 300 (1-2): 189-215. DOI: https://doi.org/10.1016/j.jembe.2003.12.007

Bueno ML, Magalhães ALB, Andrade Neto FR, Alves CBM, Rosa DdeM, Junqueira NT, Pessali TC, Pompeu PS, Zenni RD. 2021. Alien fish fauna of southeastern Brazil: species status, introduction pathways, distribution and impacts. Biol Invasions. 23 (10): 3021-3034. DOI: https://doi.org/10.1007/S10530-021-02564-X

Cadwalladr DA. 1965. The decline in the Labeo victorianus Blgr. (Pisces: Cyprinidae) fishery of Lake Victoria and an associated deterioration in some indigenous fishing methods in the Nzoia River, Kenya. East Afr Agric For J. 30 (3): 249-256. DOI: https://doi.org/10.1080/00128325.1965.11661990

Canonico GC, ArthingtonA, McCrary JK, Thieme ML. 2005. The effects of introduced tilapias on native biodiversity. Aquatic Conserv Mar Freshw Ecosyst. 15 (5): 463-483. DOI: https://doi.org/10.1002/aqc.699

Casal CMV. 2006. Global documentation of fish introductions: the growing crisis and recommendations for action. Biol Invasions. 8 (1): 3-11. DOI: https://doi.org/10.1007/S10530-005-0231-3

Cassemiro FAS, Bailly D, da Graça WJ, Agostinho AA. 2017. The invasive potential of tilapias (Osteichthyes, Cichlidae) in the Americas. Hydrobiologia. 817 (1): 133-154. DOI: https://doi.org/10.1007/S10750-017-3471-1

Castaldelli G, Pluchinotta A, Milardi M, Lanzoni M, Giari L, Rossi R, Fano EA. 2013. Introduction of exotic fish species and decline of native species in the lower Po basin, north-eastern Italy. Aquatic Conserv Mar Freshw Ecosyst. 23 (3): 405-417. DOI: https://doi.org/10.1002/aqc.2345

Chakma A, Manikantan P, Chaudhary A. 2024. Sustainable management of exotic fish biodiversity in Karnataka: status, challenges, and threats. Ecol Econ Soc INSEE J. 7 (1): 13-27. DOI: https://doi.org/10.37773/ees.v7i1.902

Charisiadou S, Halling C, Jiddawi N, von Schreeb K, Gullström M, Larsson T, Nordlund LM. 2022. Coastal aquaculture in Zanzibar, Tanzania. Aquaculture. 546: 737331. DOI: https://doi.org/10.1016/j.aquaculture.2021.737331

Chaudhari AK, Kumar Ail SS, Misra CK, De HK, Rathod R, Bhatt JH, Swain SK, Vigyan Kendra K. 2023. Status of freshwater aquaculture in Gujarat: a trend analysis and potential. Int J Bio-Resource Stress Manage. 14 (1): 059-067. DOI: https://doi.org/10.23910/1.2023.3284a

Chick JH, Maher RJ, Burr BM, Thomas MR. 2003. First black carp captured in U.S. Science. 300 (5627): 1876-1877. DOI: https://doi.org/10.1126/science.300.5627.1876

Chifamba PC, Videler JJ. 2014. Growth rates of alien Oreochromis niloticus and indigenous Oreochromis mortimeri in Lake Kariba, Zimbabwe. Afr J Aquat Sci. 39 (2): 167-176. DOI: https://doi.org/10.2989/16085914.2014.903375

Chuhila YJ, Mwita CJ, Chibwana FD. 2024. Aquaculture spillage: a gateway to establishment and colonization of non-indigenous tilapias (Pisces, Cichlidae) in the Pangani Catchment, northern Tanzania. Hydrobiologia. 851 (1): 67-86. DOI: https://doi.org/10.1007/S10750-023-05320-5

Crooks JA. 2002. Predators of the invasive mussel Musculista senhousia (Mollusca: Mytilidae). Pac Sci. 56 (1): 49-56. DOI: https://doi.org/10.1353/psc.2002.0002

Crowl TA, Townsend CR, Mcintosh AR. 1992. The impact of introduced brown and rainbow trout on native fish: the case of Australasia. Rev Fish Biol Fish. 2 (3): 217-241. DOI: https://doi.org/10.1007/bf00045038

Dadzie S. 1992. An overview of aquaculture in eastern Africa. Hydrobiologia. 232 (1): 99-110. DOI: https://doi.org/10.1007/bf00014618

De HK, Pandey DK. 2014. Rural aquaculture-now and then. Econ Aff. 59 (4): 497. DOI: https://doi.org/10.5958/0976-4666.2014.00018.7

Dempster T, Arechavala-Lopez P, Barrett LT, Fleming IA, Sanchez-Jerez P, Uglem I. 2018. Recapturing escaped fish from marine aquaculture is largely unsuccessful: alternatives to reduce the number of escapees in the wild. Rev Aquacult. 10 (1): 153-167. DOI: https://doi.org/10.1111/raq.12153

De Silva SS, Nguyen TTT, Turchini GM, Amarasinghe US, Abery NW. 2009. Alien species in aquaculture and biodiversity: a paradox in food production. Ambio. 38 (1): 24-28. DOI: https://doi.org/10.1579/0044-7447-38.1.24

[FAO] Food and Agriculture Organization of the United Nations. 2022a. The state of world fisheries and aquaculture 2022. Towards blue transformation. Roma: FAO.

[FAO] Food and Agriculture Organization of the United Nations. 2022b. Uganda. National Aquaculture Sector Overview. Roma: FAO. https://www.fao.org/fishery/en/countrysector/ug/en.

[FAO] Food and Agriculture Organization of the United Nations. 2023. Fishery and aquaculture statistics. Global aquaculture production 1950-2021 (FishStatJ). FAO Fisheries and Aquaculture Division [online]. Updated 2023. Roma: FAO. https://www.fao.org/fishery/en/statistics/software/fishstatj.

Fletcher RL, Farrell P. 1998. Introduced brown algae in the North East Atlantic, with particular respect to Undaria pinnatifida (Harvey) suringar. Helgolander Meeresunters. 52 (3-4): 259-275. DOI: https://doi.org/10.1007/bf02908901

Fredheim A, Jensen Ø, Dempster T. 2010. Norway: escapes of fish from aquaculture. In: Advancing the aquaculture agenda: Workshop Proceedings. Paris: OECD Publishing. p. 219-239. DOI: https://doi.org/10.1787/9789264088726-16-en

Fujita R, Brittingham P, Cao L, Froehlich H, Thompson M, Voorhees T. 2023. Toward an environmentally responsible offshore aquaculture industry in the United States: ecological risks, remedies, and knowledge gaps. Mar Policy. 147. DOI: https://doi.org/10.1016/j.marpol.2022.105351

Galappaththi EK, Nayak PK. 2017. Two faces of shrimp aquaculture: commonising vs. decommonising effects of a wicked driver. Marit Stud. 16: 12. DOI: https://doi.org/10.1186/S40152-017-0066-4

Geletu TT, Zhao J. 2023. Genetic resources of Nile tilapia (Oreochromis niloticus Linnaeus, 1758) in its native range and aquaculture. Hydrobiologia. 850 (10-11): 2425-2445. DOI: https://doi.org/10.1007/S10750-022-04989-4

Glover KA, Quintela M, Wennevik V, Besnier F, Sørvik AGE, Skaala Ø. 2012. Three decades of farmed escapees in the wild: a spatio-temporal analysis of Atlantic salmon population genetic structure throughout Norway. PLoS ONE. 7 (8): e43129. DOI: https://doi.org/10.1371/journal.pone.0043129

Golden CD, Seto KL, Dey MM, Chen OL, Gephart JA, Myers SS, Smith M, Vaitla B, Allison EH. 2017. Does aquaculture support the needs of nutritionally vulnerable nations? Front Mar Sci. 4: 159. DOI: https://doi.org/10.3389/fmars.2017.00159

Gopakumar K. 2003. Indian aquaculture. J Appl Aquacult. 13 (1-2): 1-10. DOI: https://doi.org/10.1300/j028v13n01_01

Gozlan RE. 2008. Introduction of non-native freshwater fish: is it all bad? Fish Fish. 9 (1): 106-115. DOI: https://doi.org/10.1111/j.1467-2979.2007.00267.x

Gozlan RE, Britton JR, Cowx I, Copp GH. 2010. Current knowledge on non-native freshwater fish introductions. J Fish Biol. 76 (4): 751-786. DOI: https://doi.org/10.1111/j.1095-8649.2010.02566.x

Gusmawati N, Soulard B, Selmaoui-Folcher N, Proisy C, Mustafa A, Le Gendre R, Laugier T, Lemonnier H. 2018. Surveying shrimp aquaculture pond activity using multitemporal VHSR satellite images-case study from the Perancak estuary, Bali, Indonesia. Mar Pollut Bull. 131: 49-60. DOI: https://doi.org/10.1016/j.marpolbul.2017.03.059

Hansen LP. 2006. Migration and survival of farmed Atlantic salmon (Salmo salar L.) released from two Norwegian fish farms. ICES J Mar Sci. 63 (7): 1211-1217. DOI: https://doi.org/10.1016/j.icesjms.2006.04.022

Hansen LP, Youngson AF. 2010. Dispersal of large farmed Atlantic salmon, Salmo salar, from simulated escapes at fish farms in Norway and Scotland. Fish Manage Ecol. 17 (1): 28-32. DOI: https://doi.org/10.1111/j.1365-2400.2009.00709.x

Hindar K, Fleming IA, McGinnity P, Diserud O. 2006. Genetic and ecological effects of salmon farming on wild salmon: modelling from experimental results. ICES J Mar Sci. 63 (7): 1234-1247. DOI: https://doi.org/10.1016/j.icesjms.2006.04.025

Holeh GM, Ochiewo JO, Tsuma S, Mirera DO. 2020. Impact of aquaculture and mariculture information dissemination to the local coastal communities in Kenya. J Aquac Res Development. 11 (9): 608.

Hyder M. 1970. Gonadal and reproductive patterns in Tilapia leucostica (Teleostei: Cichlidae) in an equatorial lake, Lake Naivasha (Kenya). J Zool Lond. 162: 179-195.

Jagger P, Pender J. 2001. Markets, marketing and production issues for aquaculture in East Africa: the case of Uganda. In: Johnston RS, Shriver AL, editors. Microbehavior and Macroresults: Proceedings of the Tenth Biennial Conference of the International Institute of Fisheries Economics and Trade, July 10-14, 2000, Corvallis, Oregon, USA. Corvallis: International Institute of Fisheries Economics and Trade (IIFET). http://hdl.handle.net/1957/30940.

Jamal MR, Kristiansen P, Kabir MJ, de Bruyn LL. 2023. Risks and adaptation dynamics in shrimp and prawn-based farming systems in southwest coastal Bangladesh. Aquaculture. 562: 738819. DOI: https://doi.org/10.1016/j.aquaculture.2022.738819

Jana BB, Jana S. 2003. The potential and sustainability of aquaculture in India. J Appl Aquacult. 13 (3-4): 283-316. DOI: https://doi.org/10.1300/j028v13n03_05

Jayasankar P. 2018. Present status of freshwater aquaculture in India-a review. Indian J Fish. 65 (4): 157-165. DOI: https://doi.org/10.21077/ijf.2018.65.4.81300-20

Jensen Ø, Dempster T, Thorstad EB, Uglem I, Fredheim A. 2010a. Escapes of fishes from Norwegian sea-cage aquaculture: causes, consequences and prevention. Aquacult Environ Interact. 1 (1): 71-83. DOI: https://doi.org/10.3354/aeI00008

Jeschke JM, Bacher S, Blackburn TM, Dick JTA, Essl F, Evans T, Gaertner M, Hulme PE, Kühn I, Mrugała A, et al. 2014. Defining the impact of non-native species. Conserv Biol. 28 (5): 1188-1194. DOI: https://doi.org/10.1111/cobi.12299

Johnson C, Sarkar UK, Koushlesh SK, Das AK, Das BK, Naskar BK. 2022. Fish assemblage, ecosystem status and potential impact of Nile Tilapia in Halali Reservoir of Central India. Environ Dev Sustain. 24 (6): 7753-7775. DOI: https://doi.org/10.1007/S10668-021-01756-8

Ju RT, Li X, Jiang JJ, Wu J, Liu J, Strong DR, Li B. 2020. Emerging risks of non-native species escapes from aquaculture: call for policy improvements in China and other developing countries. J Appl Ecol. 57 (1): 85-90. DOI: https://doi.org/10.1111/1365-2664.13521

Kaminski AM, Pounds AM, McAdam B, Bostock J, Opiyo MA, Little DC. 2024. Growing smaller fish for inclusive markets? Increasing stocking density and shortening the production cycle of Nile tilapia in cages on Lake Victoria. Aquaculture. 581: 740319. DOI: https://doi.org/10.1016/j.aquaculture.2023.740319

Kang B, Vitule JRS, Li S, Shuai F, Huang L, Huang X, Fang J, Shi X, Zhu Y, Xu D, et al. 2023. Introduction of non-native fish for aquaculture in China: a systematic review. Rev Aquac. 15 (2): 676‐703.

Kashindye BB, Nsinda P, Kayanda R, Ngupula GW, Mashafi CA, Ezekiel CN. 2015. Environmental impacts of cage culture in Lake Victoria: the case of Shirati Bay-Sota, Tanzania. SpringerPlus. 4: 475. DOI: https://doi.org/10.1186/S40064-015-1241-y

Karthik M, Suri J, Saharan N, Biradar RS. 2005. Brackish water aquaculture site selection in Palghar Taluk, Thane district of Maharashtra, India, using the techniques of remote sensing and geographical information system. Aquacult Eng. 32 (2): 285-302. DOI: https://doi.org/10.1016/j.aquaeng.2004.05.009

Katiha PK, Jena JK, Pillai NGK, Chakraborty C, Dey MM. 2005. Inland aquaculture in India: past trend, present status and future prospects. Aquacult Econ Manage. 9 (1-2): 237-264. DOI: https://doi.org/10.1080/13657300590961573

Katsanevakis S, Wallentinus I, Zenetos A, Leppäkoski E, Çinar ME, Oztürk B, Grabowski M, Golani D, Cardoso AC. 2014. Impacts of invasive alien marine species on ecosystem services and biodiversity: a pan-European review. Aquat Invasions. 9 (4): 391-423. DOI: https://doi.org/10.3391/ai.2014.9.4.01

Khan MF, Panikkar P, Salim SM, Leela RV, Sarkar UK, Das BK, Eregowda VM. 2021. Modeling impacts of invasive sharp tooth African catfish Clarias gariepinus (Burchell 1822) and Mozambique tilapia Oreochromis mossambicus (Peters, 1852) on the ecosystem of a tropical reservoir ecosystem in India. Environ Sci Pollut Res. 28 (41): 58310-58321. DOI: https://doi.org/10.1007/s11356-021-14667-y

Krishnakumar K, Ali A, Pereira B, Raghavan R. 2011. Unregulated aquaculture and invasive alien species: a case study of the African Catfish Clarias gariepinus in Vembanad Lake (Ramsar Wetland): Kerala, India. J Threat Taxa. 3 (5): 1737-1744. DOI: https://doi.org/10.11609/jott.o2378.1737-44

Kroboth PT, Cox CL, Chapman DC, Whitledge GW. 2019. Black carp in North America: a description of range, habitats, time of year, and methods of reported captures. N Am J Fish Manage. 39 (5): 1046-1055. DOI: https://doi.org/10.1002/nafm.10340

Kumar AB, Jaj S, Arjun CP, Katwate U, Raghavan R. 2019. Jurassic invaders: flood-associated occurrence of arapaima and alligator gar in the rivers of Kerala. Curr Sci. 116 (10): 1628-1630. https://www.researchgate.net/publication/333324702

Kumaran M, Ghoshal TK, De D, Biswas G, Raja RA, Anand PS, Panigrahi A, Vijayan KK. 2020. Aquaculture-based production systems for the livelihood security of coastal farm families in the risk-prone agro-ecosystem of India: an appraisal. Aquacult Int. 28 (2): 805-814. DOI: https://doi.org/10.1007/s10499-019-00495-y

Lebel P, Whangchai N, Chitmanat C, Promya J, Chaibu P, Sriyasak P, Lebel L. 2013. River-based cage aquaculture of tilapia in northern Thailand: sustainability of rearing and business practices. Nat Resour. 4 (5): 410-421. DOI: https://doi.org/10.4236/nr.2013.45051

Li H. 1999. Nonindigenous fishes introduced into Inland Waters of the United States. Pam L. Fuller, Leo G. Nico, James D. Williams. J N Am Benthol Soc. 18 (4): 563-565. DOI: https://doi.org/10.2307/1468388

Li L, Pitcher TJ, Devlin RH. 2015. Potential risks of trophic impacts by escaped transgenic salmon in marine environments. Environ Conserv. 42 (2): 152-161. DOI: https://doi.org/10.1017/s0376892914000319

Lobón-Cerviá J, Sanz N. 2017. Brown trout: life history, ecology and management. London: Willey. 816 p. DOI: https://doi.org/10.1002/9781119268352

Jayanthi M, Ravisankar T, Nagaraj G, Thirumurthy S, Muralidhar M, Saraswathy R. 2019. Is aquaculture abandonment a threat to sustainable coastal resource use? A case study of Andhra Pradesh, India, with options for reuse. Land Use Policy. 86: 54-66. DOI: https://doi.org/10.1016/j.landusepol.2019.04.034

Madhun AS, Harvey A, Skaala Ø, Wennevik V, Knutar S, Solberg MF, Quintela M, Fjeldheim PT, Meier S, Glover KA. 2023. Caught in the trap: over half of the farmed Atlantic salmon removed from a wild spawning population in the period 2014-2018 were mature. Aquacult Environ Interact. 15: 271-285. DOI: https://doi.org/10.3354/aei00465

Mahadevan H. 2011. Exploited fishery resources of Pampa River, Kerala, India. Indian J Fish. 58 (3): 13-22. https://www.researchgate.net/publication/263471155

Mbowa S, Odokonyero T, Munyaho A. 2017. Harnessing floating cage technology to increase fish production in Uganda. Research Series. 138. Kampala: Economic Policy Research Centre (EPRC). 38 p. DOI: https://doi.org/10.22004/ag.econ.262886

Menaga M, Fitzsimmons K. 2017. Growth of the tilapia industry in India. World Aquacult. 48 (3): 49-52. https://www.researchgate.net/profile/Kevin-Fitzsimmons-4/publication/319681169

Mirera DO, Magondu EW, Wainaina MW, Muli B, Okemwa D, Angulu R, Heba I, Moyoni H. 2023. Fish preference at different value chain levels and implications for management of mariculture. Mar Policy. 157: 105845. DOI: https://doi.org/10.1016/j.marpol.2023.105845

Mirera DO, Ochiewo J, Munyi F. 2014. Social and economic implications of small-scale mud crab (Scylla serrata) aquaculture: the case of organised community groups. Aquacult Int. 22 (4): 1499-1514. DOI: https://doi.org/10.1007/s10499-014-9762-x

Mmanda FP, Mulokozi DP, Lindberg JE, Norman Haldén A, Mtolera M, Kitula R, Lundh T. 2020. Fish farming in Tanzania: the availability and nutritive value of local feed ingredients. J Appl Aquacult. 32 (4): 341-360. DOI: https://doi.org/10.1080/10454438.2019.1708836

Mosha SS, Daudi JM. 2020. A review of aquaculture production in Tanzania; recent status, challenges and opportunities, and its impact in poverty alleviation. Sumerianz J Agricult Vet. 3 (8): 107-115. DOI: https://doi.org/10.47752/sjav.38.107.115

Mramba RP, Kahindi, E. J. 2023. The status and challenges of aquaculture development in Dodoma, a semi-arid region in Tanzania. Aquacult Int. 31 (3): 1551-1568. DOI: https://doi.org/10.1007/s10499-022-01041-z

Mugimba KK, Chengula AA, Wamala S, Mwega ED, Kasanga CJ, Byarugaba DK, Mdegela RH, Tal S, Bornstein B, Dishon A, Mutoloki S, et al. 2018. Detection of tilapia lake virus (TiLV) infection by PCR in farmed and wild Nile tilapia (Oreochromis niloticus) from Lake Victoria. J Fish Dis. 41 (8): 1181-1189. DOI: https://doi.org/10.1111/jfd.12790

Mugisha P, Kansiime F, Mucunguzi P, Kateyo E. 2007. Wetland vegetation and nutrient retention in Nakivubo and Kirinya wetlands in the Lake Victoria basin of Uganda. Physics Chem Earth. 32 (15-18): 1359-1365. DOI: https://doi.org/10.1016/j.pce.2007.07.040

Mulokozi DP, Berg H, Lundh T. 2020a. An ecological and economical assessment of integrated amaranth (Amaranthus hybridus) and Nile Tilapia (Oreochromis niloticus) farming in Dar es Salaam, Tanzania. Fishes. 5 (3): 30. DOI: https://doi.org/10.3390/fishes5030030

Mulokozi DP, Mmanda FP, Onyango P, Lundh T, Tamatamah R, Berg H. 2020b. Rural aquaculture: assessment of its contribution to household income and farmers’ perception in selected districts, Tanzania. Aquacult Econ Manage. 24 (4): 387-405. DOI: https://doi.org/10.1080/13657305.2020.1725687

Munguti JM, Kim JD, Ogello EO. 2014. An overview of Kenyan aquaculture: current status, challenges, and opportunities for future development. Fish Aquat Sci. 17 (1): 1-11. DOI: https://doi.org/10.5657/fas.2014.0001

Munguti JM, Nairuti R, Iteba JO, Obiero KO, Kyule D, Opiyo MA, Abwao J, Kirimi JG, Outa N, Muthoka M, et al. 2022. Nile tilapia (Oreochromis niloticus Linnaeus, 1758) culture in Kenya: emerging production technologies and socio‐economic impacts on local livelihoods. Aquacult Fish Fish. 2 (4): 265-276. DOI: https://doi.org/10.1002/aff2.58

Munilkumar S, Nandeesha MC. 2007. Aquaculture practices in Northeast India: current status and future directions. Fish Physiol Biochem. 33 (4): 399-412. DOI: https://doi.org/10.1007/s10695-007-9163-4

Mutyaba JL, Ngigi MW, Ayuya OI, Livingstone Mutyaba J, Ingasia Ayuya O. 2024. Determinants of knowledge, attitude and perception towards cage fish farming technologies among smallholder farmers in Uganda. Cogent Food Agric. 10 (1): 2313252. DOI: https://doi.org/10.1080/23311932.2024.2313252

Mzula A, Wambura PN, Mdegela RH, Shirima GM. 2021. Present status of aquaculture and the challenge of bacterial diseases in freshwater farmed fish in Tanzania, a call for sustainable strategies. Aquac Fish. 6 (3): 247-253. DOI: https://doi.org/10.1016/j.aaf.2020.05.003

Nair VR, Parvathy U, Jithin TJ, Binsi PK, Ravishankar CN. 2023. Live transportation of food fishes: current scenario and future prospects. Curr Sci. 124 (4): 418-425.

Naylor RL, Hardy RW, Buschmann AH, Bush SR, Cao L, Klinger DH, Little DC, Lubchenco J, Shumway SE, Troell M. 2021. A 20-year retrospective review of global aquaculture. Nature. 591 (7851): 551-563. DOI: https://doi.org/10.1038/S41586-021-03308-6

Nguka G, Shitote Z, Wakhungu J, China S. 2017. Effect of fish farming on household food security in Western Kenya. Afr J Food Agric Nutr Dev. 17 (1): 11657-11672. DOI: https://doi.org/10.18697/ajfand.77.15965

Nguyen NH. 2016. Genetic improvement for important farmed aquaculture species with a reference to carp, tilapia and prawns in Asia: achievements, lessons and challenges. Fish Fish. 17 (2): 483-506. DOI: https://doi.org/10.1111/faf.12122

Njiru JM, Aura CM, Okechi JK. 2019. Cage fish culture in Lake Victoria: a boon or a disaster in waiting? Fish Manage Ecol. 26 (5): 426-434. DOI: https://doi.org/10.1111/fme.12283

Nobile AB, Zanatta AS, Brandão H, Zica EOP, Lima FP, Freitas-Souza D, Carvalho ED, Silva RJ da, Ramos IP. 2018. Cage fish farm act as a source of changes in the fish community of a Neotropical reservoir. Aquaculture. 495: 780-785. DOI: https://doi.org/10.1016/j.aquaculture.2018.06.053

Nobinraja M, Aravind NA, Ravikanth G. 2023. Opening the floodgates for invasion-modelling the distribution dynamics of invasive alien fishes in India. Environ Monit Assess. 195: 1411. DOI: https://doi.org/10.1007/s10661-023-12012-z

Odende T, Ogello EO, Iteba JO, Owori H, Outa N, Obiero KO, Munguti JM, Kyule DN, Kimani S, Osia MM. 2022. Promoting sustainable smallholder aquaculture productivity through landscape and seascape aquapark models: a case study of Busia County, Kenya. Front Sustain Food Syst. 6: 898044. DOI: https://doi.org/10.3389/fsufs.2022.898044

Opiyo MA, Bundi MJ, Kyule Domitila, Okwema M. Gladys. 2016. Overview of ornamental fish production in Kenya: current status, opportunities and challenges. Bull Anim Hlth Prod Afr Fish. 64 (2): 193-200. https://www.researchgate.net/publication/318494142.

Opiyo MA, Marijani E, Muendo P, Odede R, Leschen W, Charo-Karisa H. 2018. A review of aquaculture production and health management practices of farmed fish in Kenya. Int J Vet Sci Med. 6 (2): 141-148. DOI: https://doi.org/10.1016/j.ijvsm.2018.07.001

Outa NO, Yongo EO, Keyombe JLA, Ogello EO, Namwaya Wanjala D. 2020. A review on the status of some major fish species in Lake Victoria and possible conservation strategies. Lakes Reserv. 25 (1): 105-111. DOI: https://doi.org/10.1111/lre.12299

Pauly D, Zeller D. 2019. Agreeing with FAO: comments on SOFIA 2018. Mar Policy. 100: 332-333. DOI: https://doi.org/10.1016/j.marpol.2018.12.009

Pearson G, Barratt C, Seeley J, Ssetaala A, Nabbagala G, Asiki G. 2013. Making a livelihood at the fish-landing site: exploring the pursuit of economic independence amongst Ugandan women. J East Afr Stud. 7 (4): 751-765. DOI: https://doi.org/10.1080/17531055.2013.841026

Peeler EJ, Oidtmann BC, Midtlyng PJ, Miossec L, Gozlan RE. 2011. Non-native aquatic animals introductions have driven disease emergence in Europe. Biol Invasions. 13 (6): 1291-1303. DOI: https://doi.org/10.1007/s10530-010-9890-9

Peter HK, van Zwieten PAM. 2022. Bet-hedging strategies determine daily choices in effort allocation for Nile perch fishers of Lake Victoria. Fish Res. 253. DOI: https://doi.org/10.1016/j.fishres.2022.106363

Pimentel D, Zuniga R, Morrison D. 2005. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ. 52 (3): 273-288. DOI: https://doi.org/10.1016/j.ecolecon.2004.10.002

Pinto L, Chandrasena N, Pera J, Hawkins P, Eccles D, Sim R. 2005. Managing invasive carp (Cyprinus carpio L.) for habitat enhancement at Botany Wetlands, Australia. Aquat Conserv Mar Freshwat Ecosyst. 15 (5): 447-462. DOI: https://doi.org/10.1002/aqc.684

Pragathi MS, Anitha M, Sreenivasulu G, Jayaraju N. 2023. Sustainable aquaculture and economic development in coastal areas: the case of Andhra Pradesh, India. In: Jayaraju N, Sreenivasulu G, Madakka M, Manjulatha M, editors. Coasts, estuaries and lakes. Cham: Springer. p. 393-404. DOI: https://doi.org/10.1007/978-3-031-21644-2_24

Proisy C, Viennois G, Sidik F, Andayani A, Enright JA, Guitet S, Gusmawati N, Lemonnier H, Muthusankar G, Olagoke A, et al. 2018. Monitoring mangrove forests after aquaculture abandonment using time series of very high spatial resolution satellite images: a case study from the Perancak estuary, Bali, Indonesia. Mar Pollut Bull. 131: 61-71. DOI: https://doi.org/10.1016/j.marpolbul.2017.05.056

Quiñones RA, Fuentes M, Montes RM, Soto D, León-Muñoz J. 2019. Environmental issues in Chilean salmon farming: a review. Rev Aquacult. 11 (2): 375-402. DOI: https://doi.org/10.1111/raq.12337

Raghavan R, Prasad G, Anvar-Ali PH, Pereira B. 2008. Exotic fish species in a global biodiversity hotspot: Observations from River Chalakudy, part of Western Ghats, Kerala, India. Biol Invasions. 10 (1): 37-40. DOI: https://doi.org/10.1007/S10530-007-9104-2

Raj NS, Swaminathan TR, Dharmaratnam A, Raja SA, Ramraj D, Lal KK. 2019. Aeromonas veronii caused bilateral exophthalmia and mass mortality in cultured Nile tilapia, Oreochromis niloticus (L.) in India. Aquaculture. 512: 734278. DOI: https://doi.org/10.1016/j.aquaculture.2019.734278

Research and Markets. 2023. Aquaculture global market report 2023. Research and Markets. https://www.researchandmarkets.com/reports/5766638/aquaculture-global-market-report.

Ricciardi A, Kipp R. 2008. Predicting the number of ecologically harmful exotic species in an aquatic system. Divers Distrib. 14 (2): 374-380. DOI: https://doi.org/10.1111/j.1472-4642.2007.00451.x

Robledo D, Ogwang J, Byakora E, Schulze JN, Benda KK, Fraslin C, Salisbury S, Solimo M, Mayega JF, Peter B, et al. 2024. Genetic diversity and population structure of farmed and wild Nile tilapia (Oreochromis niloticus) in Uganda: the potential for aquaculture selection and breeding programs. Genomics. 116 (1): 110781. DOI: https://doi.org/10.1016/j.ygeno.2024.110781

Roshni K, Renjithkumar CR, Sreekanth GB, Raghavan R, Ranjeet K, Harikrishnan M, Kurup BM. 2022. Trophic interactions between native and exotic cichlids in a shallow tropical estuary (Lake Vembanad, India). Mar Freshwat Res. 73 (3): 411-416. DOI: https://doi.org/10.1071/mf21044

Salin KR, Arome Ataguba G. 2018. Aquaculture and the environment: towards sustainability. In: Hai F, Visvanathan C, Boopathy R. editors. Sustainable aquaculture. Applied environmental science and engineering for a sustainable future. Cham: Springer. p. 1-62. DOI: https://doi.org/10.1007/978-3-319-73257-2_1

Sanda MK, Metcalfe NB, Mable BK. 2024. The potential impact of aquaculture on the genetic diversity and conservation of wild fish in sub-Saharan Africa. Aquat Conserv Mar Freshwat Ecosyst. 34 (2): e4105. DOI: https://doi.org/10.1002/aqc.4105

Sandilyan S. 2023. Do aquaculture and ornamental fish culturing sites act as a bridgehead for alien fish invasion in Indian Wetlands? A review. Proc Natl Acad Sci India Sect B Biol Sci. DOI: https://doi.org/10.1007/S40011-023-01482-3

Sarkar UK, Pathak AK, Sinha RK, Sivakumar K, Pandian AK, Pandey A, Dubey VK, Lakra WS. 2012. Freshwater fish biodiversity in the River Ganga (India): changing pattern, threats and conservation perspectives. Rev Fish Biol Fish. 22 (1): 251-272. DOI: https://doi.org/10.1007/s11160-011-9218-6

Senanan W, Kapuscinski AR, Na-Nakorn U, Miller LM. 2004. Genetic impacts of hybrid catfish farming (Clarias macrocephalus x C. gariepinus) on native catfish populations in central Thailand. Aquaculture. 235 (1-4): 167-184. DOI: https://doi.org/10.1016/j.aquaculture.2003.08.020

Sepúlveda M, Arismendi I, Soto D, Jara F, Farias F. 2013. Escaped farmed salmon and trout in Chile: incidence, impacts, and the need for an ecosystem view. Aquacult Environ Interact. 4 (3): 273-283. DOI: https://doi.org/10.3354/aei00089

Shalli MS, Mmochi AJ, Rubekie AP, Yona GK, Shoko AP, Limbu SM, Mwita CJ, Lamtane HA, Hamed SS, Jiddawi NS, et al. 2024. The contribution of milkfish (Chanos chanos) pond farming to socio-economics and coastal community livelihoods for a sustainable blue economy in Tanzania. Aquacult Int. 1-17. DOI: https://doi.org/10.1007/S10499-024-01408-4

Siddique MAB, Ahammad AKS, Bashar A, Hasan NA, Mahalder B, Alam MM, Biswas JC, Haque, MM. 2022. Impacts of climate change on fish hatchery productivity in Bangladesh: a critical review. Heliyon. 8 (12): e11951. DOI: https://doi.org/10.1016/j.heliyon.2022.e11951

Singh AK. 2014. Emerging alien species in Indian aquaculture emerging alien species in Indian aquaculture: prospects and threats. J Aquat Biol Fish. 2 (1): 32-41.

Singh AK. 2021. State of aquatic invasive species in tropical India: an overview. Aquat Ecosyst Health Manage. 24 (2): 13-23. DOI: https://doi.org/10.14321/aehm.024.02.05

Singh AK, Kumar D, Srivastava SC, Ansari A, Jena JK, Sarkar UK. 2013. Invasion and impacts of alien fish species in the Ganga River, India. Aquat Ecosyst Health Manage. 16 (4): 408-414. DOI: https://doi.org/10.1080/14634988.2013.857974

Singh AK, Lakra WS. 2011. Risk and benefit assessment of alien fish species of the aquaculture and aquarium trade into India. Rev Aquacult. 3 (1): 3-18. DOI: https://doi.org/10.1111/j.1753-5131.2010.01039.x

Singh AK, Pathak AK, Lakra WS. 2010. Invasion of an exotic fish-common carp, Cyprinus Carpio L. (Actinopterygii: Cypriniformes: Cyprinidae) in the Ganga River, India and its impacts. Acta Ichthyol Pisc. 40 (1): 11-19. DOI: https://doi.org/10.3750/aip2010.40.1.02

Skilbrei OT, Jørgensen T. 2010. Recapture of cultured salmon following a large-scale escape experiment. Aquacult Environ Interact. 1 (2): 107-115. DOI: https://doi.org/10.3354/aei00011

Slater MJ, Mgaya YD, Mill AC, Rushton SP, Stead SM. 2013. Effect of social and economic drivers on choosing aquaculture as a coastal livelihood. Ocean Coastal Management. 73: 22-30. DOI: https://doi.org/10.1016/j.ocecoaman.2012.12.002

Soto D, Arismendi I, Olivos JA, Canales-Aguirre CB, Leon-Muñoz J, Niklitschek EJ, Sepúlveda M, Paredes F, Gomez-Uchida D, Soria-Galvarro Y. 2023. Environmental risk assessment of non-native salmonid escapes from net pens in the Chilean Patagonia. Rev Aquacult. 15 (1): 198-219. DOI: https://doi.org/10.1111/raq.12711

Sreelekshmi S, Harikrishnan M, Nandan SB, Kaimal VS, Hershey NR. 2022. Ecosystem carbon stock and stable isotopic signatures of soil organic carbon sources across the mangrove ecosystems of Kerala, Southern India. Wetlands. 42 (4): 29. DOI: https://doi.org/10.1007/s13157-022-01540-y

Sserwambala SPK, Thorarensen H, Pálsson T. 2017. Viability of aquaculture in Uganda. Reykjavík: United Nations University - Fisheries Training Programme (UNUFTP). 36 p. [accessed 2024 Feb 26]. https://www.grocentre.is/static/gro/publication/498/document/Simon%20Peter_final%20project_2018.pdf.

Stanković D, Crivelli AJ, Snoj A. 2015. Rainbow trout in Europe: introduction, naturalization, and impacts. Rev Fish Sci Aquacult. 23 (1): 39-71. DOI: https://doi.org/10.1080/23308249.2015.1024825

Stevens JR, Newton RW, Tlusty M, Little DC. 2018. The rise of aquaculture by-products: increasing food production, value, and sustainability through strategic utilisation. Mar Policy. 90: 115-124. DOI: https://doi.org/10.1016/j.marpol.2017.12.027

Syanya FJ, Litabas JA, Mathia WM, Ntakirutimana R. 2023a. Nutritional fish diseases in aquaculture: a human health hazard or mythical theory: an overview. Eur J Nut Food Saf. 15 (8): 41-58. DOI: https://doi.org/10.9734/ejnfs/2023/v15i81326

Syanya FJ, Mathia WM. 2023. Status of fish health and biosecurity management systems in Kenya’s aquaculture production units. A case of government authenticated fish hatcheries. In ResearchSquare. DOI: https://doi.org/10.21203/rs.3.rs-2430657/v1

Syanya FJ, Mathia WM, Mumina P, Litabas JA, Sifuna C. 2024. Aqua perspectives: stakeholder attitudes and perceptions in live fish transportation practices within the Kenyan fisheries sector. Mar Fish Sci. 37 (2): 317-335. DOI: https://doi.org/10.47193/mafis.3722024010507

Syanya FJ, Winam ZO, Mathia WM. 2023b. Vanishing splendor: a comprehensive review of the decline in the original fish fauna of Lake Victoria. Mar Fish Sci. 37 (1): 209-231. DOI: https://doi.org/10.47193/mafis.3712024010107

Tabasian H, Abdoli A, Valikhani H, Khosravi M, Madiseh SD. 2021. An investigation into socio-economic impacts of invasive redbelly tilapia Coptodon zillii (Gervais, 1848): a case study from the Shadegan Wetland, Iran. Sci Rep Life Sci. 2 (3): 25-38. DOI: https://doi.org/10.22034/srls.2021.245823

Taranger GL, Karlsen Ø, Bannister RJ, Glover KA, Husa V, Karlsbakk E, Kvamme BO, Boxaspen KK, Bjørn PA, Finstad B, et al. 2015. Risk assessment of the environmental impact of Norwegian Atlantic salmon farming. ICES J Mar Sci. 72 (3): 997-1021. DOI: https://doi.org/10.1093/icesjms/fsu132

Taylor NG, Dunn AM. 2017. Size matters: predation of fish eggs and larvae by native and invasive amphipods. Biol Invasions. 19 (1): 89-107. DOI: https://doi.org/10.1007/S10530-016-1265-4

Thorvaldsen T, Holmen IM, Moe HK. 2015. The escape of fish from Norwegian fish farms: causes, risks and the influence of organisational aspects. Mar Policy. 5558: 33-38. DOI: https://doi.org/10.1016/j.marpol.2015.01.008

Tisdell C. 2003. Aquaculture’s potential impacts on conservation of wild stocks and biodiversity. Aquacult Econ Manage. 7 (1-2): 155-165. DOI: https://doi.org/10.1080/13657300309380337

Tumwesigye Z, Tumwesigye W, Opio F, Kemigabo C, Mujuni B. 2022. The effect of water quality on aquaculture productivity in Ibanda District, Uganda. Aquacult J. 2 (1): 23-36. DOI: https://doi.org/10.3390/aquacj2010003

van der Veer G, Nentwig W. 2015. Environmental and economic impact assessment of alien and invasive fish species in Europe using the generic impact scoring system. Ecol Freshwat Fish. 24 (4): 646-656. DOI: https://doi.org/10.1111/eff.12181

Vitule JRS, Umbria SC, Aranha JMR. 2006. Introduction of the African catfish Clarias gariepinus (Burchell, 1822) into Southern Brazil. Biol Invasions. 8 (4): 677-681. DOI: https://doi.org/10.1007/S10530-005-2535-8

Wang Q, Cheng L, Liu J, Li Z, Xie S, De Silva SS. 2015. Freshwater aquaculture in PR China: trends and prospects. Rev Aquacult. 7 (4): 283-302. DOI: https://doi.org/10.1111/RAQ.12086

Wang M, Lu M. 2016. Tilapia polyculture: a global review. Aquacult Res. 47 (8): 2363-2374. DOI: https://doi.org/10.1111/are.12708

Watanabe WO, Losordo TM, Fitzsimmons K, Hanley F. 2002. Tilapia production systems in the Americas: technological advances, trends, and challenges. Rev Fish Sci. 10 (3-4): 465-498. DOI: https://doi.org/10.1080/20026491051758

Weber MJ, Brown ML. 2009. Effects of common carp on aquatic ecosystems 80 years after “carp as a dominant”: ecological insights for fisheries management. Rev Fish Sci. 17 (4): 524-537. DOI: https://doi.org/10.1080/10641260903189243

Weyl OLF, Eilender BR, Ivey P, Jackson MC, Tweddile D, Wasserman RJ, Woodford DJ, Zengeya TA. 2017. Africa. In: Lobón-Cerviá J, Sanz N, editors. Brown trout: life history, ecology and management. London: Wiley. p. 623-639. DOI: https://doi.org/10.1002/9781119268352.ch24

Woodley MC, Slack WT, Peterson MS, Vervaeke WC. 2002. Occurrence of the non-indigenous giant Malaysian prawn, Macrobrachium rosenbergii (De Man, 1879) in Simmons Bayou, Mississippi, U.S.A. Crustaceana. 75 (8): 1025-1031. https://www.jstor.org/stable/20105485

WorldFish. 2023. Asia-Africa BlueTech Superhighway. WorldFish. https://worldfishcenter.org/project/asia-africa-bluetech-superhighway.

Xiong W, Guo C, Gozlan RE, Liu J. 2023. Tilapia introduction in China: economic boom in aquaculture versus ecological threats to ecosystems. Rev Aquacult. 15 (1): 179-197. DOI: https://doi.org/10.1111/raq.12710

Xiong W, Shen C, Wu Z, Lu H, Yan Y. 2017. A brief overview of known introductions of non-native marine and coastal species into China. Aquat Invasions. 12 (1): 109-115. DOI: https://doi.org/10.3391/ai.2017.12.1.11

Yaqoob S. 2021. A review of structure, origin, purpose impact of common carp (Cyprinus carpio) in India. Ann Romanian Soc Cell Biol. 25 (6): 34-47. http://www.annalsofrscb.ro/index.php/journal/article/view/5156

Yongo E, Zhang P, Mutethya E, Zhao T, Guo Z. 2023. The invasion of tilapia in South China freshwater systems: a review. Lakes Reserv. 28 (1): e12429. DOI: https://doi.org/10.1111/lre.12429

Yuan Y, Yuan Y, Dai Y, Gong Y. 2017. Economic profitability of tilapia farming in China. Aquacult Int. 25 (3): 1253-1264. DOI: https://doi.org/10.1007/S10499-017-0111-8

Zhang X, Du H, Zhao Z, Wu Y, Cao Z, Zhou Y, Sun Y. 2023. Risk assessment model system for aquatic animal introduction based on analytic hierarchy process (AHP). Animals. 13 (12). DOI: https://doi.org/10.3390/ani13122035

Zhao Y, Gozlan RE, Zhang C. 2015. Current state of freshwater fisheries in China. In: Craig JF, editor. Freshwater fisheries ecology. Willey. p. 221-230. DOI: https://doi.org/10.1002/9781118394380.ch19

Publicado

29-04-2024

Cómo citar

Harikrishnan, M., Syanya, F. J., Khanna, A. R. N., Mumina, P. y Mathia, W. M. (2024) «Consecuencias ecológicas de los escapes accidentales de la acuicultura: una visión general de los riesgos, las estrategias de remediación y las lagunas de conocimiento en el sector de la acuicultura de la India y los países ribereños de África Oriental», Marine and Fishery Sciences (MAFIS), 37(4), pp. 633–666. doi: 10.47193/mafis.3742024010709.