Fishery and conservation implications of molecular characterization and traceability of ceviche samples from Pacific Panama

Authors

  • Edgardo Díaz-Ferguson Estación Científica Coiba (COIBA AIP), Calle Gustavo Lara, Edificio 145B, Ciudad del Saber, 0843-01853 - Clayton, Panamá - Sistema Nacional de Investigación (SNI), Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Panamá
  • Sara C. Justo Estación Científica Coiba (COIBA AIP), Calle Gustavo Lara, Edificio 145B, Ciudad del Saber, 0843-01853 - Clayton, Panamá
  • Vicente Del Cid Fundación MarViva, Casa 134B, 134C, Calle Evelio Lara, Clayton, Panamá
  • Juan Posada Fundación MarViva, Casa 134B, 134C, Calle Evelio Lara, Clayton, Panamá

DOI:

https://doi.org/10.47193/mafis.37X2024010101

Keywords:

CITES species, molecular traceability, overexploitation, supply chain, elasmobranchs, native species, non-native species, environmental DNA

Abstract

Genetic analysis of 111 samples from ceviche cocktails and fish fillets used for ceviche, obtained from fish markets and processing plants in the Pacific zone of Panama were conducted to determine species composition, trace origin (native, nonnative or imported frozen species) and CITES species status. A total of 21 species were detected (20 fishes and one invertebrate): Coryphaena hippurus (dolphin fish), Pangasianodon hypophthalmus (basa), Trachinotus falcatus (pompano), Cyclopsetta querna (toothed flounder), Atheresthes stomias (arrow-tooth flounder), Lobotes pacificus (Pacific tripletail), Bagre panamensis (Chihuil sea-catfish), B. bagre (Coco sea-catfish), Ariopsis seemanni (Tete sea-catfish), Aspistor luniscutis (yellow sea-catfish), Centropomus viridis (white snook), C. undecimalis (Union snook), Sphyrae naensis (Mexican barracuda), Oreochromis niloticus (Nile tilapia), O. mossambicus (Mozambique tilapia), Cynoscion praedatorius (Boccone weakfish), Protonibea diacanthus (blackspotted croaker), Gadus chalcogrammus (Alaska pollock), Sphyrna lewini (scalloped hammerhead shark), Makaira nigricans (blue marlin) and Dosidicus gigas (giant Humbolt squid). Native species found in ceviche samples were reduced in numbers compared with imported and cultivated ones. Thus, the most common detected fish species was basa, followed by the Nile tilapia and the dolphin fish. This is a positive result in terms of sustainability of local fisheries, since basa is imported as frozen fish meat from Asia. The same applies for Nile tilapia, a cultivated freshwater species not captured from local fisheries. For the dolphin fish, despite being common and exploited in Pacific waters, previous studies suggest its fishery is sustainable in Panama waters. In terms of conservation status, one species cataloged by IUCN as vulnerable (VU), the blue marlin (M. nigricans) and one as critically endangered (CR), the scalloped hammerhead shark (S. lewini) were detected. Sphyrae lewini is also catalog as CITES appendix II. The giant Humbolt squid (D. gigas), classified by IUCN as data deficient (DD), was the only invertebrate detected in samples obtained from a ceviche processing plant. Two sets of primers and dual labeled probes were designed for qPCR eDNA detection of the only CITES species, S. lewini. These represent the first qPCR markers for eDNA detection of S. lewini. Results from this project promote the sustainable use of fishery resources and might provide ceviche producers with a certificate from MarViva Foundation certifying that their ceviche is free of sharks or species threatened/protected by law, giving added value to their product. Molecular detection and molecular traceability are sensitive and species specific, what makes of this tool a reliable method to combat IUU (illegal, unreported and undocumented) fishing.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Edgardo Díaz-Ferguson, Estación Científica Coiba (COIBA AIP), Calle Gustavo Lara, Edificio 145B, Ciudad del Saber, 0843-01853 - Clayton, Panamá - Sistema Nacional de Investigación (SNI), Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Panamá

Sara C. Justo, Estación Científica Coiba (COIBA AIP), Calle Gustavo Lara, Edificio 145B, Ciudad del Saber, 0843-01853 - Clayton, Panamá

Vicente Del Cid, Fundación MarViva, Casa 134B, 134C, Calle Evelio Lara, Clayton, Panamá

Juan Posada, Fundación MarViva, Casa 134B, 134C, Calle Evelio Lara, Clayton, Panamá

References

Borit M, Olsen P. 2012. Evaluation framework for regulatory requirements related to data recording and traceability designed to prevent illegal, unreported and unregulated fishing. Mar Policy. 36 (1): 96-102. DOI: https://doi.org/10.1016/j.marpol.2011.03.012

Cailliet GM, Musick JA, Simpfendorfer CA, Stevens JD. 2005. Ecology and life history characteristics of chondrichthyan fish. In: Fowler SL, Cavanagh RD, Camhi M, Burgess GH, Cailliet G, Fordham SV, Simpfendorfer CA, Musick JA, editors. Sharks, rays and chimaeras: the status of the chondrichthyan fishes, status survey. Gland, Cambridge: IUCN/Shark Specialist Group. 461 p.

Collette BB, Di Natale A, Fox WG, Juan Jorda M, Pohlot B, Schratwieser J. 2022. Makaira nigricans. The IUCN Red List of Threatened Species.

Costa Leal M, Pimentel T, Ricardo F, Rosa R, Calado R. 2015. Seafood traceability: current needs, available tools, and biotechnological challenges for origin certification. Trends Biotechnol. 33 (6): 331-336. DOI: https://doi.org/10.1016/j.tibtech.2015.03.003

Díaz-Ferguson E, Chial M, Gonzalez M, Muñoz E, Chen O, Durán O, Vega AJ, Delgado CR. 2023. Building a teleost fish traceability program based on genetic data from Pacific Panama fish markets. Animals. 13 (14): 2272. DOI: https://doi.org/10.3390/ani13142272

Díaz-Ferguson E, Haney R, Wares J, Silliman B. 2010. Population genetics of a trochid gastropod broadens picture of Caribbean Sea connectivity. PLoS ONE. 5 (9): 1-8. DOI: https://doi.org/10.1371/journal.pone.0012675

Díaz-Ferguson E, Haney RA, Wares JP, Silliman BR. 2012. Genetic structure and connectivity patterns of two Caribbean rocky-intertidal gastropods. J Molluscan Stud. 78 (1): 112-118. DOI: https://doi.org/10.1093/mollus/eyr050

Díaz-Ferguson E. 2012. Introducción a la ecología molecular marina: aplicaciones y perspectivas. Panamá: Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT). 212 p.

Díaz-Ferguson E, Guzmán H. 2021. Diversidad, conectividad genética y tamaño poblacional de tiburón punta blanca (Trianodono besus) (Rupell 1837) en el Parque Nacional Coiba (PNC) Código: APB11-012. In preparation.

[FAO] Food and Agriculture Organization of the United Nations. 2020. The state of food and agriculture 2020. Overcoming water challenges in agriculture. Roma: FAO. 178 p. DOI: https://doi.org/10.4060/cb1447en

Galimberti A, De Mattia F, Losa A, Bruni I, Federici S, Casiraghi M, Martellos S, Labra M. 2013. DNA barcoding as a new tool for food traceability. Food Res Int. 50 (1): 55-63. DOI: https://doi.org/10.1016/j.foodres.2012.09.036

Garcés H. 2021. Lista sistemática preliminar de los peces marinos comerciales del Pacífico de Panamá. Tecnociencia. 23 (1): 198-237.

Geneious Prime. 2022. Geneious Version 7.04. Biomatters. https://www.geneious.com.

Graves JE, McDowell JR. 2003. Stock structure of the world’s istiophorid billfishes: a genetic perspective. Mar Freshwat Res. 54 (4): 287-98. DOI: https://doi.org/10.1071/MF01290

Guzmán HM, Beaver CE, Díaz-Ferguson E. 2021. Novel insights into the genetic population connectivity of transient whale sharks (Rhincodon typus) in Pacific Panama provide crucial data for conservation efforts. Front Mar Sci. 8: 744109. DOI: https://doi.org/10.3389/fmars.2021.744109

Guzman HM, Díaz-Ferguson E, Vega AJ, Robles YA. 2015. Assessment of the dolphin fish Coryphaena hippurus (Perciformes: Coryphaenidae) fishery in Pacific Panama. Rev Biol Trop. 63 (3): 705-716.

Håstein T, B J Hill, F Berthe, D V Lightner. 2001. Traceability of aquatic animals. Rev Sci Tech Off Int Epiz. 20 (2): 564-583. DOI: https://doi.org/10.20506/rst.20.2.1300

Hauser L, Adcock GJ, Smith PJ, Bernal Ramírez JH, Carvalho GR. 2002. Loss of microsatellite diversity and low effective population size in an overexploited population of New Zealand snapper (Pagrus auratus). Proc Natl Acad Sci USA. 99 (18): 11742-11747. DOI: https://doi.org/10.1073/pnas.172242899

Hebert PDN, Cywinska A, Ball SL, DeWaard JR. 2003. Biological identifications through DNA barcodes. Proc R Soc B. 270 (1512): 313-321. DOI: https://doi.org/10.1098/rspb.2002.2218

Helyar SJ, Lloyd HaD, de Bruyn M, Leake J, Bennett N, Carvalho GR. 2014. Fish product mislabelling: failings of traceability in the production chain and implications for Illegal, unreported and unregulated (IUU) fishing. PLoS ONE. 9 (6): e98691. DOI: https://doi.org/10.1371/journal.pone.0098691

Hosch G, Blaha F. 2017. Seafood traceability for fisheries compliance: Country-level support for catch documentation schemes. FAO Fish Aquacul Tech Pap. 619. 114 p.

Jacquet JL, Pauly D. 2008. Trade secrets: renaming and mislabeling of seafood. Mar Policy. 32 (3): 309-318. DOI: https://doi.org/10.1016/j.marpol.2007.06.007

Justo S. 2022. Estructura y variabilidad genética de tiburones del género Mustelus spp. en el golfo de Chiriquí y Montijo como áreas de influencia del Parque Nacional Coiba [thesis]. Panamá: International Maritime University of Panama.

Khaksar R, Carslon T, Schaffner DW, Ghorashi M, Best D, Jandhyala S, Traverso J, Amini S. 2015. Unmasking seafood mislabeling in U.S. markets: DNA barcoding as a unique technology for food authentication and quality control. Food Control. 56: 71-76. DOI: https://doi.org/10.1016/j.foodcont.2015.03.007

Kleiber P, Hinton MG, Uozumi Y. 2003. Stock assessment of blue marlin (Makaira nigricans) in the Pacific using MULTIFAN-CL. Mar Freshwat Res. 54 (4): 349-360. DOI: https://doi.org/10.1071/MF01246

Naaum A, Hanner R, editors. 2016. Seafood Authenticity and Traceability for fisheries compliance. 1st ed. Academic Press. 198 p.

Nance HA, Klimley P, Galván-Magaña F, Martínez-Ortíz J, Marko PB. 2011. Demographic processes underlying subtle patterns of population structure in the scalloped hammerhead shark, Sphyrna lewini. PLoS ONE. 6 (7): e21459. DOI: https://doi.org/10.1371/journal.pone.0021459

Ogden R. 2008. Fisheries forensics: the use of DNA tools for improving compliance, traceability and enforcement in the fishing industry. Fish Fish. 9 (4): 462-472. DOI: https://doi.org/10.1111/j.1467-2979.2008.00305.x

Ratnasingham S, Hebert PDN. 2007. Bold: the barcode of life data system (http://www.barcodinglife.org). Mol Ecol Notes. 7 (3): 355-364. DOI: https://doi.org/10.1111/j.1471-8286.2007.01678.x

Rodriguez Arriatti Y, Tavares R, Alvarado S. 2021. Assessment of the artisanal shark fishery in the Pacific coast of Panama highlights a high proportion of immature and threatened species. Pan Am J Aquat Sci. 16 (2): 189-195.

Velez-Zuazo X, Alfaro-Shigueto J, Rosas-Puchuri U, Guidino C, Pasara-Polack A, Riveros JC, Mangel JC. 2021. High incidence of mislabeling and a hint of fraud in the ceviche and sushi business. Food Control. 129: 108224. DOI: https://doi.org/10.1016/j.foodcont.2021.108224

Ward RD, Hanner R, Hebert PDN. 2009. The campaign to DNA barcode all fishes, FISH-BOL. J Fish Biol. 74 (2): 329-356. DOI: https://doi.org/10.1111/j.1095-8649.2008.02080.x

Williams SM, Wyatt J, Ovenden JR. 2020. Investigating the genetic stock structure of blue marlin (Makaira nigricans) in the Pacific Ocean. Fish Res. 228: 105565. DOI: https://doi.org/10.1016/j.fishres.2020.105565

Wong EHK, Hanner RH. 2008. DNA barcoding detects market substitution in North American seafood. Food Res Int. 41 (8): 828-837. DOI: https://doi.org/10.1016/j.foodres.2008.07.005

Downloads

Published

2023-12-01

How to Cite

Díaz-Ferguson, E., Justo, S. C., Del Cid, V. and Posada, J. (2023) “Fishery and conservation implications of molecular characterization and traceability of ceviche samples from Pacific Panama”, Marine and Fishery Sciences (MAFIS), 37(3), pp. 379–390. doi: 10.47193/mafis.37X2024010101.