Using head, pectoral girdle bones and otoliths to estimate length and weight of Argentine anchovy (Engraulis anchoita), a key species in Patagonian marine ecosystem

Authors

  • Santiago J. Fernández Centro para el Estudio de Sistemas Marinos (CESIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Nacional Patagónico (CENPAT), Boulevard Almirante Brown 2915, U9120ACD - Puerto Madryn, Argentina - Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, Boulevard Almirante Brown 3051, U9120ACE - Puerto Madryn, Argentina
  • Cynthia Ibarra Centro para el Estudio de Sistemas Marinos (CESIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Nacional Patagónico (CENPAT), Boulevard Almirante Brown 2915, U9120ACD - Puerto Madryn, Argentina
  • Ximena Navoa Instituto de Investigación de Hidrobiología, Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, Gales 48, U9100CKA - Trelew, Argentina
  • Javier E. Ciancio Centro para el Estudio de Sistemas Marinos (CESIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Nacional Patagónico (CENPAT), Boulevard Almirante Brown 2915, U9120ACD - Puerto Madryn, Argentina

DOI:

https://doi.org/10.47193/mafis.3712024010103

Keywords:

Head bones, otoliths, regression, Patagonia, measurements, length-weight

Abstract

The Argentine anchovy, Engraulis anchoita, plays a vital role as a key prey species for several marine predators in the north Patagonian marine ecosystem of the Atlantic Ocean. Reconstructing the length and weight of each consumed specimen is essential to provide a detailed description of the trophic ecology of top marine predators. Predictive linear regression equations were calculated for the Patagonian stock of Argentine anchovy to estimate parameters of length-weight relationships using measurements of whole individuals and diagnostic elements such as otoliths, head bones and pectoral fin bones. Among the diagnostic elements analyzed, the cleithrum and dentary exhibited the best fit. This study validates the use of head and pectoral girdle bones as reliable indicators for predicting the weight and length of Argentine anchovy across a wide size range, which corresponds to the target range of various predators. These relationships can contribute to the determination of body condition, estimation of consumed biomass, and calculation of energy density, providing valuable insights into the trophic ecology of predators in the southern Atlantic Ocean.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Santiago J. Fernández, Centro para el Estudio de Sistemas Marinos (CESIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Nacional Patagónico (CENPAT), Boulevard Almirante Brown 2915, U9120ACD - Puerto Madryn, Argentina - Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, Boulevard Almirante Brown 3051, U9120ACE - Puerto Madryn, Argentina

Cynthia Ibarra, Centro para el Estudio de Sistemas Marinos (CESIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Nacional Patagónico (CENPAT), Boulevard Almirante Brown 2915, U9120ACD - Puerto Madryn, Argentina

Javier E. Ciancio, Centro para el Estudio de Sistemas Marinos (CESIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Nacional Patagónico (CENPAT), Boulevard Almirante Brown 2915, U9120ACD - Puerto Madryn, Argentina

References

Belleggia M, Figueroa DE, Sánchez F, Bremec C. 2012. Long-term changes in the spiny dogfish (Squalus acanthias) trophic role in the southwestern Atlantic. Hydrobiologia. 684: 57-67. DOI: https://doi.org/10.1007/s10750-011-0967-y

Blacker R. 1974. Recent advances in otolith studies. In: Jones F, editor. Sea Fisheries Research. New York: Wiley.

Carlander KD, Smith LL. 1945. Some factors to consider in the choice between standard, fork, or total lengths in fishery investigations. Copeia. 1945: 7-12.

Carss DN, Elston DA. 1996. Errors associated with otter Lutra lutra faecal analysis. II. Estimating prey size distribution from bones recovered in spraints. J Zool. 238 (2): 319-332. DOI: https://doi.org/10.1111/j.1469-7998.1996.tb05397.x

Castillo J, Yorio P, Gatto A. 2019. Shared dietary niche between sexes in Magellanic Penguins. Austral Ecol. 44: 635-647. DOI: https://doi.org/10.1111/aec.12706

Ciancio JE, Bartes S, Fernández S, Harillo C, Lancelotti J. 2020. Energy density predictors for Argentine anchovy Engraulis anchoita, a key species of the southwestern Atlantic Ocean. Trans Am Fish Soc. 149: 204-212. DOI: https://doi.org/10.1002/tafs.10223

Ciancio JE, Yorio P, Buratti C, Colombo GÁ, Frere E. 2021. Isotopic niche plasticity in a marine top predator as indicator of a large marine ecosystem food web status. Ecol Indic. 126: 107687. DOI: https://doi.org/10.1016/j.ecolind.2021.107687

Crespo EA, Pedraza SN, Dans SL, Koen Alonso M, Reyes LM, García NA, Coscarella M, Schiavini ACM. 1997. Direct and indirect effects of the highseas fisheries on the marine mammal populations in the northern and central Patagonian coast. J Northw Atl Fish Sci. 22: 189-207. DOI: https://doi.org/10.2960/J.v22.a15

Fernández SJ, Yorio P, Ciancio JE. 2019. Diet composition of expanding breeding populations of the Magellanic Penguin. Mar Biol Res. 15: 84-96. DOI: https://doi.org/10.1080/17451000.2019.1596286

Fox J, Friendly GG, Graves S, Heiberger R, Monette G, Nilsson H, Ripley B, Weisberg S, Fox MJ, Suggests M. 2007. The car package. R Foundation for Statistical Computing. 1109: 1431.

Froese R. 2006. Cube law, condition factor and weight-length relationships: history, meta‐ analysis and recommendations. J Appl Ichthyol. 22: 241-253. DOI: https://doi.org/10.1111/j.1439-0426.2006.00805.x

Froese R, Tsikliras AC, Stergiou KI. 2011. Editorial note on weight-length relations of fishes. Acta Ichthyol Piscat. 41: 261-263. DOI: https://doi.org/10.3750/aip2011.41.4.01

Garciarena AD, Perrotta RG, López F. 2002. Informe sobre el muestreo de desembarque de anchoíta (Engraulis anchoita) y caballa (Scomber japonicus) en el puerto de Mar del Plata: período septiembre 1999-enero 2000, con algunos comentarios sobre el manejo de estos recursos. INIDEP Inf Téc. 45. 17 p.

Gatto AJ, Yorio P. 2009. Provisioning of mates and chicks by Cayenne and Royal Terns: resource partitioning in northern Patagonia, Argentina. Emu. 109: 49-55. DOI: https://doi.org/10.1071/MU08025

González-Zevallos D, Kuba L, Gosztonyi AE. 2010. Estimación de la longitud utilizando relaciones morfométricas de huesos del cráneo, cintura escapular, otolitos y medidas específicas del cuerpo en Merluccius hubbsi en aguas patagónicas. Rev Biol Mar Oceanogr. 45 (2): 341-345. DOI: https://doi.org/10.4067/S0718-19572010000200017

Gosztonyi AE, Kuba L. 1996. Atlas de los huesos craneales y de la cintura escapular de peces costeros patagónicos. Inf Téc Fund Patagon Nat. 4: 29 p.

Haimovici M, Velasco G. 2000. Relações comprimento peso de peixes teleósteos marinhos do sul do Brasil com uma avaliação de diferentes métodos de ajuste. Atlantica. 22: 131-140.

Hansel HC, Duke SD, Lofy PT, Gray GA. 1988. Use of diagnostic bones to identify and estimate original lengths of ingested prey fishes. Trans Am Fish Soc. 117: 55-62. DOI: https://doi.org/10.1577/1548-8659(1988)117<0055:UODBTI>2.3.CO;2

Hansen JE. 1997. Muestreo bioestadístico de pescado en el Puerto de Mar del Plata. Anchoíta (Engraulis anchoita). Período 1986-1990. Inf Téc INIDEP. 15: 1-24.

Hansen JE. 2004. Anchoíta (Engraulis anchoita). In: Sánchez RP, Bezzi SI, editors. El Mar Argentino y sus recursos pesqueros. Tomo 4. Los peces marinos de interés pesquero caracterización biológica y evaluación del estado de explotación. Mar del Plata: Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP). p. 101-115.

Hódar J. 1997. The use of regresion equations for the estimation of prey length and biomass in diet studies of insectivore vertebrates. Arx Misc Zool. 20: 1-10.

Ibarra C, Marinao C, Suárez N, Kasinsky T, Yorio P. 2022. Patterns of sexual segregation in the use of trophic resources in breeding Imperial Cormorants. Mar Biol. 169: 154. DOI: https://doi.org/10.1007/s00227-022-04143-7

Ibarra C, Marinao C, Suárez N, Yorio P. 2018. Differences between colonies and chick-rearing stages in Imperial Cormorant (Phalacrocorax atriceps) diet composition: implications for trophic studies and monitoring. Wilson J Ornithol. 130: 224-234. DOI: https://doi.org/10.1676/16-184.1

Koen Alonso M, Crespo E, García N, Pedraza S, Mariotti P, Vera BB, Mora N. 2001. Food habits of Dipturus chilensis (Pisces: Rajidae) off Patagonia, Argentina. ICES J Mar Sci. 58: 288-297. DOI: https://doi.org/10.1006/jmsc.2000.1010

Koen Alonso M, Crespo EA, García NA, Pedraza SN, Coscarella MA. 1998. Diet of dusky dolphins, Lagenorhynchus obscurus, in waters off Patagonia, Argentina. Fish Bull. 96: 366-374.

Koen Alonso M, Crespo EA, Pedraza SN, Garcia NA, Coscarella MA. 2000. Food habits of the South American sea lion, Otaria flavescens, off Patagonia, Argentina. Fish Bull. 98: 250-263.

Kuriakose S. 2017. Estimation of length weight relationship in fishes. Course Manual Summer School on advanced methods for fish stock assessment and fisheries management lecture note series no. 2/2017. CMFRI, Kochi, p. 215-220.

Laidig TE, Ralston S. 1995. The potential use of otolith characters in identifying larval rockfish (Sebastes spp.). Fish Bull. 93: 166-171.

Linhart H, Zucchini W. 1986. Model selection. New York: John Wiley & Sons.

Loizaga de Castro R, Saporiti F, Vales DG, García NA, Cardona L, Crespo EA. 2016. Feeding ecology of dusky dolphins Lagenorhynchus obscurus: evidence from stable isotopes. J Mammal. 97 (1): 310-320. DOI: https://doi.org/10.1093/jmammal/gyv180

Martínez‐Polanco MF, Béarez P, Jiménez‐Acosta M, Cooke RG. 2022. Allometry of Mexican hogfish (Bodianus diplotaenia) for predicting the body length of individuals from two pre‐Columbian sites in the Pearl Island archipelago (Panama). Int J Osteoarchaeol. 32: 669-681. DOI: https://doi.org/10.1002/oa.3094

Perez Comesaña J, Clavin P, Arias K, Riestra C. 2014. Total length estimation of the Brazilian flathead Percophis brasiliensis, using morphometric relationships of skull, pectoral girdle bones, otoliths and specific body measures, in Argentine waters. J Appl Ichthyol. 30: 377-380. DOI: https://doi.org/10.1111/jai.12244

Pirotta V, McIntosh R, Gray R, Marsh H, Lynch M. 2022. Marine mammals. In: Smith BP, Waudby CA, Hampton JO, editors. Wildlife Research in Australia: practical and applied methods. Clayton South: CSIRO Publishing. p. 465-477.

Prenda J, Granado-Lorencio C. 1992. Biometric analysis of some cyprinid bones of prey fishes to estimate the original lengths and weights. Folia Zool. 41: 175-185.

R Core Team. 2021. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

Ramos JA, Furness RW. 2022. Seabirds as indicators of forage fish stocks. In: Ramos J, Pereira L, editors. Seabird biodiversity and human activities. Boca Raton: CRC Press.

Riestra CM, Perez Comesaña JE, Arias KA, Tamini LL, Chiaramonte GE. 2020. Back-calculation of total length of Argentine seabass Acanthistius patachonicus using morphometric relationships of bones and measurements of the body. Mar Fish. 33: 69-75. DOI: https://doi.org/10.47193/mafis.3312020061804

Sánchez F. 2009. Alimentación de la merluza (Merluccius hubbsi) en el Golfo San Jorge y aguas adyacentes. INIDEP Inf Téc. 75. 21 p.

Scharf F, Yetter R, Sunninner A, Juanes F. 1998. Enhancing diet analyses of piscivorous fishes in the Northwest Atlantic through identification and reconstruction of original prey sizes from ingested remains. Fish Bull. 96: 575-588.

Schindelin J, Rueden CT, Hiner MC, Eliceiri KW. 2015. The ImageJ ecosystem: an open platform for biomedical image analysis. Mol Reprod Dev. 82: 518-529. DOI: https://doi.org/10.1002/mrd.22489

Sinovčić G, Franičević M, Zorica B, Čikeš‐ Keč V. 2004. Length-weight and length-length relationships for 10 pelagic fish species from the Adriatic Sea (Croatia). J Appl Ichthyol. 20: 156-158. DOI: https://doi.org/10.1046/j.1439-0426.2003.00519.x

Sokal R, Rohlf F. 1987. Biostatistics. 2nd ed. New York: Freeman. 301 p.

Tapella F, Lovrich GA. 2006. Morphological differences between ‘subrugosa’ and ‘gregaria’ morphs of adult Munida (Decapoda: Anomura: Galatheidae) from the Beagle Channel, southern South America. J Mar Biol Assoc UK. 86: 1149-1155. DOI: https://doi.org/10.1017/S0025315406014123

Velarde E, Ezcurra E, Anderson DW. 2013. Seabird diets provide early warning of sardine fishery declines in the Gulf of California. Sci Rep. 3: 1-6. DOI: https://doi.org/10.1038/srep01332

Velasco G, Castello JP. 2005. An ecotrophic model of southern Brazil continental shelf and fisheries scenarios for Engraulis anchoita (Pisces, Engraulididae). Atlantica. 27: 59-68.

Weatherley A, Gill H. 1987. The biology of fish growth. Orlando: Academic Press.

Downloads

Published

2024-01-01

How to Cite

Fernández, S. J., Ibarra, C., Navoa, X. and Ciancio, J. E. (2024) “Using head, pectoral girdle bones and otoliths to estimate length and weight of Argentine anchovy (Engraulis anchoita), a key species in Patagonian marine ecosystem”, Marine and Fishery Sciences (MAFIS), 37(1), pp. 241–252. doi: 10.47193/mafis.3712024010103.