Resistencia antimicrobiana: la estreptococosis como preocupación relacionada con el cultivo de tilapia
DOI:
https://doi.org/10.47193/mafis.3722024010508Palabras clave:
Antibióticos, acuicultura, piscicultura, probiótico, bacteriosisResumen
A pesar de todo el conocimiento técnico científico sobre la estreptococosis, la alta prevalencia de infecciones bacterianas causadas por Streptococcus spp. en el cultivo de la tilapia del Nilo, implica el uso frecuente y muchas veces irresponsable de antibióticos. El uso de quimioterapia en los ambientes de acuicultura sigue siendo una práctica eficiente en el tratamiento de infecciones bacterianas y prevención de enfermedades. La investigación ha demostrado que la aparición de resistencia antimicrobiana (AMR) en los peces cultivados es uno de los principales desafíos que enfrenta la acuicultura. Se sabe que la AMR emergente en la acuicultura puede transferirse a cepas clínicamente importantes desde el entorno natural, a través de la transferencia de genes horizontales (HGT) y afectar a todo el ecosistema acuático. Mantener la salud en las granjas de tilapia promueve la sostenibilidad de los sistemas de producción y, en consecuencia, mejora la calidad de los productos finales de las granjas. Por lo tanto, esta revisión aborda cómo la prevención, el control y la erradicación de enfermedades en las granjas de la tilapia del Nilo, juegan un papel fundamental en el mantenimiento de la salud pública al garantizar las condiciones sanitarias adecuadas para los animales destinados al consumo humano.
Descargas
Métricas
Citas
Ahmadi K, Banaee M, Vosoghei AR, Mirvaghefei AR, Ataeimehr B. 2012. Evaluation of the immunomodulatory effects of silymarin extract (Silybum marianum) on some immune parameters of rainbow trout, Oncorhynchus mykiss (Actinopterygii: Salmoniformes: Salmonidae). Acta Ichthyol Pisc. 42 (2): 113-120. DOI: https://doi.org/10.3750/AIP2011.42.2.04
Amal MNA, Zamri-Saad M. 2011. Streptococcosis in tilapia (Oreochromis niloticus): a review. Pertanika J Trop Agric Sci. 34 (2): 195-206.
Amenyogbe E, Chen G, Wang Z, Huang J, Huang B, Li H. 2020. The exploitation of probiotics, prebiotics and synbiotics in aquaculture: present study, limitations and future directions: a review. Aquacult Int. 28: 1017-1041. DOI: https://doi.org/10.1007/s10499-020-00509-0
Ang CY, Sano M, Dan S, Leelakriangsak M, Lal TM. 2020. Postbiotics applications as infectious disease control agent in aquaculture. Biocontrol Sci. 25 (1): 1-7. DOI: https://doi.org/10.4265/bio.25.1
Arumugam M, Jayaraman S, Sridhar A, Venkatasamy V, Brown PB, Abdul Kari Z, Tellez-Isaias G, Ramasamy T. 2023. Recent advances in tilapia production for sustainable developments in Indian aquaculture and its economic benefits. Fishes. 8 (4): 176. DOI: https://doi.org/10.3390/fishes8040176
Beltrán JMG, Esteban MÁ. 2022. Nature-identical compounds as feed additives in aquaculture. Fish Shellfish Immunol. 123: 409-416. DOI: https://doi.org/10.1016/j.fsi.2022.03.010
Bjørndal T, Dey M, Tusvik A. 2023. Economic analysis of the contributions of aquaculture to future food security. Aquaculture. 740071. DOI: https://doi.org/10.1016/j.aquaculture.2023.740071
Bouwmeester MM, Goedknegt MA, Poulin R, Thieltges DW. 2021. Collateral diseases: aquaculture impacts on wildlife infections. J Appl Ecol. 58 (3): 453-464. DOI: https://doi.org/10.1111/1365-2664.13775
BAP [Brazilian Association of Pisciculture]. 2023. Brazilian pisciculture yearbook. Edition 2023. São Paulo: BAP. p. 65. [accessed 2023 Sep 15]. https://www.peixebr.com.br/anuario/.
Caipang CMA, Suharman I, Avillanosa AL, Bargoyo VT. 2020. Host-derived probiotics for finfish aquaculture. IOP Conf Ser Earth Environ Sci. 430 (1): 012026. DOI: https://doi.org/10.1088/1755-1315/430/1/012026
Cardoso L, Owatari MS, Chaves FCM, Furtado WE, Honorato LA, Agnes JP, Santos DC, Pedrosa RC, Fontes ST, Mouriño JLP, Martins ML. 2023. Lippia sidoides essential oil (Verbenaceae) improves inflammatory response and histological condition in Danio rerio. Aquacult Int. 31: 2665-2685. DOI: https://doi.org/10.1007/s10499-023-01103-w
Castilho-Barros L, Owatari MS, Mouriño JLP, Silva BC, Seiffert WQ. 2020. Economic feasibility of tilapia culture in southern Brazil: a small-scale farm model. Aquaculture. 515: 734551. DOI: https://doi.org/10.1016/j.aquaculture.2019.734551
Carraschi SP, Cruz C, Machado Neto JG, Castro MP, Bortoluzzi NL, Gírio ACF. 2011a. Eficácia do florfenicol e da oxitetraciclina no controle de Aeromonas hydrophila em pacu (Piaractus mesopotamicus). Arq Bras Med Vet Zoo. 63: 579-583. DOI: https://doi.org/10.1590/S0102-09352011000300007
Carraschi SP, Shiogiri NS, Venturini FP, da Cruz C, Gírio ACF, Machado Neto JG. 2011b. Acute toxicity and environmental risk of oxytetracyline and florfenicol antibiotics to pacu (Piaractus mesopotamicus). Bol Inst Pesca. 37 (2): 115-122.
Chapela MJ, Ferreira M, Varela C, Arregui L, Garrido-Maestu A. 2018. Development of a multiplex real-time PCR method for early diagnosis of three bacterial diseases in fish: a real-case study in trout aquaculture. Aquaculture. 496: 255-261. DOI: https://doi.org/10.1016/j.aquaculture.2018.07.003
Costa AR, Chideroli RT, Chicoski LM, de Abreu DC, Favero LM, Ferrari NA, Mainardi RM, Silva VGD, Pereira UP. 2021. Frequency of pathogens in routine bacteriological diagnosis in fish and their antimicrobial resistance. Semina: Cienc Agrar. 42 (6): 3259-3272. DOI: https://doi.org/10.5433/1679-0359.2021v42n6p3259
Dang LT, Nguyen LHT, Pham VT, Bui HT. 2021. Usage and knowledge of antibiotics of fish farmers in small‐scale freshwater aquaculture in the Red River Delta, Vietnam. Aquacult Res. 52 (8): 3580-3590. DOI: https://doi.org/10.1111/are.15201
Dawood MA, Habotta OA, Elsabagh M, Azra MN, Van Doan H, Kari ZA, Sewilam H. 2022. Fruit processing by‐products in the aquafeed industry: a feasible strategy for aquaculture sustainability. Rev Aquacul. 14 (4): 1945-1965. DOI: https://doi.org/10.1111/raq.12680
Debnath SC, McMurtrie J, Temperton B, Delamare-Deboutteville J, Mohan CV, Tyler C. R. 2023. Tilapia aquaculture, emerging diseases, and the roles of the skin microbiomes in health and disease. Aquacult Int. 31: 2945-2976. DOI: https://doi.org/10.1007/s10499-023-01117-4
Deng L, Li Y, Geng Y, Zheng L, Rehman T, Zhao R, Wang K, OuYang P, Chen D, Huang X, He C, Yang Z, Lai W. 2019. Molecular serotyping and antimicrobial susceptibility of Streptococcus agalactiae isolated from fish in China. Aquaculture. 510: 84-89. DOI: https://doi.org/10.1016/j.aquaculture.2019.05.046
Domenech A, Brochado AR, Sender V, Hentrich K, Henriques-Normark B, Typas A, Veening JW. 2020. Proton motive force disruptors block bacterial competence and horizontal gene transfer. Cell Host Microbe. 27 (4): 544-555. DOI: https://doi.org/10.1016/j.chom.2020.02.002
[FAO] Food and Agriculture Organization of the United Nations. 2022. The state of world fisheries and aquaculture 2022. Towards Blue Transformation. Rome: FAO DOI: https://doi.org/10.4060/cc0461en
Faust M, Owatari MS, de Almeida MVS, Leite dos Santos A, Martins W, Vicente LRM, Jatobá A. 2023. Dietary Saccharomyces cerevisiae improves survival after thermal and osmotic challenge during sexual reversal of post‐larvae Nile Tilapia. North Am J Aquacult. DOI: https://doi.org/10.1002/naaq.10298
Ferri G, Lauteri C, Vergara A. 2022. Antibiotic resistance in the finfish aquaculture industry: a review. Antibiotics. 11 (11): 1574. DOI: https://doi.org/10.3390/antibiotics11111574
Figueiredo HCP, Leal CAG, Pereira FL, Soares SC, Gonçalves LA, Dorella FA, Carvalho AF, Azevedo VAC. 2016. Whole-genome sequence of Francisella noatunensis subsp. orientalis strain FNO01 isolated from diseased Nile tilapia in Brazil. Genome Announc. 4 (1): 1110-1128. DOI: https://doi.org/10.1128/genomea.01603-15
Haenen OL, Dong HT, Hoai TD, Crumlish M, Karunasagar I, Barkham T, Chen SL, Zadoks R, Kiermeier A, Wang B, et al. 2023. Bacterial diseases of tilapia, their zoonotic potential and risk of antimicrobial resistance. Rev Aquacul. 15: 154-185. DOI: https://doi.org/10.1111/raq.12743
Igbinosa IH, Igumbor EU, Aghdasi F, Tom M, Okoh AI. 2012. Emerging Aeromonas species infections and their significance in public health. Sci World J. 2012: 625023. DOI: https://doi.org/10.1100/2012/625023
Imperi M, Pataracchia M, Alfarone G, Baldassarri L, Orefici G, Creti R. 2010. A multiplex PCR assay for the direct identification of the capsular type (Ia to IX) of Streptococcus agalactiae. J Microbiol Methods. 80 (2): 212-214. DOI: https://doi.org/10.1016/j.mimet.2009.11.010
Jank L, Martins MT, Arsand JB, Campos Motta TM, Hoff RB, Barreto F, Pizzolato TM. 2015. High-throughput method for macrolides and lincosamides antibiotics residues analysis in milk and muscle using a simple liquid-liquid extraction technique and liquid chromatography-electrospray-tandem mass spectrometry analysis (LC-MS/MS). Talanta. 144: 686-695. DOI: https://doi.org/10.1016/j.talanta.2015.06.078
Jeon JH, Jang KM, Lee JH, Kang LW, Lee SH. 2023. Transmission of antibiotic resistance genes through mobile genetic elements in Acinetobacter baumannii and gene-transfer prevention. Sci Total Environ. 857: 159497. DOI: https://doi.org/10.1016/j.scitotenv.2022.159497
Jesus GF, Pereira SA, Owatari MS, Addam K, Silva BC, Sterzelecki FC, Sugai JK, Cardoso L, Jatobá A, Mouriño JLP, Martins ML. 2019. Use of protected forms of sodium butyrate benefit the development and intestinal health of Nile tilapia during the sexual reversion period. Aquaculture. 504: 326-333. DOI: https://doi.org/10.1016/j.aquaculture.2019.02.018
Jesus GFA, Owatari MS, Pereira SA, Silva BC, Syracuse NM, Lopes GR, Addam K, Cardoso L, Mouriño JLP, Martins ML. 2021. Effects of sodium butyrate and Lippia origanoides essential oil blend on growth, intestinal microbiota, histology, and haemato-immunological response of Nile tilapia. Fish Shellfish Immunol. 117: 62-69. DOI: https://doi.org/10.1016/j.fsi.2021.07.008
Khanjani MH, Sharifinia M, Hajirezaee S. 2022. Recent progress towards the application of biofloc technology for tilapia farming. Aquaculture. 552: 738021. DOI: https://doi.org/10.1016/j.aquaculture.2022.738021
Kim JH, Gomez DK, Choresca Jr CH, Park SC. 2007. Detection of major bacterial and viral pathogens in trash fish used to feed cultured flounder in Korea. Aquaculture. 272 (1-4): 105-110. DOI: https://doi.org/10.1016/j.aquaculture.2007.09.008
Leal CAG, Tavares GC, Figueiredo HCP. 2014. Outbreaks and genetic diversity of Francisella noatunensis subsp orientalis isolated from farm-raised Nile tilapia (Oreochromis niloticus) in Brazil. Genet Mol Res. 13 (3): 5704-5712. DOI: http://dx.doi.org/10.4238/2014.July.25.26
Lewbart GA. 2001. Bacteria and ornamental fish. Semin Avian Exot Pet Med. 10 (1): 48-56. DOI: https://doi.org/10.1053/saep.2001.19543
Liang N, Huang P, Hou X, Li Z, Tao L, Zhao L. 2016. Solid-phase extraction in combination with dispersive liquid-liquid microextraction and ultra-high performance liquid chromatography-tandem mass spectrometry analysis: the ultra-trace determination of 10 antibiotics in water samples. Anall Bioanal Chem. 408: 1701-1713. DOI: https://doi.org/10.1007/s00216-015-9284-z
Lima RMS, Figueiredo HCP, Faria FCD, Picolli RH, Bueno Filho JSDS, Logato PVR. 2006. Antibacterial resistance in bacteria from fish pond and Nile tilapia fillets (Oreochromis niloticus). Cienc Agrotecnol. 30: 126-132. DOI: https://doi.org/10.1590/S1413-70542006000100018
Lochmiller RL, Deerenberg C. 2000. Trade‐offs in evolutionary immunology: just what is the cost of immunity? Oikos. 88 (1): 87-98. DOI: https://doi.org/10.1034/j.1600-0706.2000.880110.x
Lombardo-Aguei M, Cruces-Blanco C, Garcia-Campana AM, Gamiz-Gracia L. 2014. Multiresidue analysis of quinolones in water by ultra-high perfomance liquid chromatography with tandem mass spectrometry using a simple and effective sample treatment. J Sep Sci. 37: 2145-2152. DOI: https://doi.org/10.1002/jssc.201400223
Luiz AL, Maciel EVS, Lanças FM. 2015. Miniaturized sample preparation techniques and their application to the determination of residues and contaminants in food samples. Scientia Chromatographica. 7 (3): 157-182.
Mahoney AR, Safaee MM, Wuest WM, Furst AL. 2021. The silent pandemic: emergent antibiotic resistances following the global response to SARS-CoV-2. Iscience. DOI: https://doi.org/10.1016/j.isci.2021.102304
Manohar P, Shanthini T, Bozdogan B, Lundborg CS, Tamhankar AJ, Palaniyar N, Ramesh N. 2020. Transfer of antibiotic resistance genes from gram-positive bacterium to gram-negative bacterium. BioRxiv. DOI: https://doi.org/10.1101/2020.11.01.364331
Mastrochirico-Filho VA, Ariede RB, Freitas MV, Lira LV, Agudelo JF, Pilarski F, Neto RVR, Yáñez JM, Hashimoto DT. 2019. Genetic parameters for resistance to Aeromonas hydrophila in the Neotropical fish pacu (Piaractus mesopotamicus). Aquaculture. 513: 734442. DOI: https://doi.org/10.1016/j.aquaculture.2019.734442
Monteiro SH, Andrade GCRM, Garcia F, Pilarski F. 2018. Antibiotic residues and resistant bacteria in aquaculture. Pharm Chem J. 5 (4): 127-147.
Mougin J, Joyce A. 2023. Fish disease prevention via microbial dysbiosis‐associated biomarkers in aquaculture. Rev Aquacul. 15 (2): 579-594. DOI: https://doi.org/10.1111/raq.12745
Nguyen HT, Kanai K, Yoshikoshi K. 2002. Ecological investigation of Streptococcus iniae in cultured Japanese flounder (Paralichthys olivaceus) using selective isolation procedures. Aquaculture. 205 (1-2): 7-17. DOI: https://doi.org/10.1016/S0044-8486(01)00667-6
Niu G, Wongsathein D, Boonyayatra S, Khattiya R. 2019. Occurrence of multiple antibiotic resistance and genotypic characterization in Edwardsiella tarda isolated from cage‐cultured hybrid red tilapia (Oreochromis sp.) in the Ping River, Northern Thailand. Aquacult Res. 50 (12): 3643-3652. DOI: https://doi.org/10.1111/are.14322
Okeke ES, Chukwudozie KI, Nyaruaba R, Ita RE, Oladipo A, Ejeromedoghene O, Atakpa EO, Agu CV, Okoye CO. 2022. Antibiotic resistance in aquaculture and aquatic organisms: a review of current nanotechnology applications for sustainable management. Environ Sci Pollut Res. 29 (46): 69241-69274. DOI: https://doi.org/10.1007/s11356-022-22319-y
Osman KM, Al-Maary KS, Mubarak AS, Dawoud TM, Moussa IM, Ibrahim MD, Hessain AM, Orabi A, Fawzy NM. 2017. Characterization and susceptibility of streptococci and enterococci isolated from Nile tilapia (Oreochromis niloticus) showing septicaemia in aquaculture and wild sites in Egypt. BMC Vet Res. 13 (1): 1-10. DOI: https://doi.org/10.1186/s12917-017-1289-8
Oviedo-Bolaños K, Rodríguez-Rodríguez JA, Sancho-Blanco C, Barquero-Chanto JE, Peña-Navarro N, Escobedo-Bonilla CM, Umaña-Castro R. 2021. Molecular identification of Streptococcus sp. and antibiotic resistance genes present in Tilapia farms (Oreochromis niloticus) from the Northern Pacific region, Costa Rica. Aquacult Int. 29 (5): 2337-2355. DOI: https://doi.org/10.1007/s10499-021-00751-0
Owatari MS, Jesus GFA, Brum A, Pereira SA, Lehmann NB, De Pádua Pereira U, Martins ML, Mouriño JLP. 2018. Sylimarin as hepatic protector and immunomodulator in Nile tilapia during Streptococcus agalactiae infection. Fish Shellfish Immunol. 82: 565-572. DOI: https://doi.org/10.1016/j.fsi.2018.08.061
Owatari MS, Jesus GFA, Cardoso L, Ferreira TH, Ferrarezi JVS, De Pádua Pereira U, Martins ML, Mouriño JLP. 2019. Different via to apply the Gamaxine® commercial biopromoter to Nile tilapia evaluating the immune system responses to Streptococcus agalactiae Ib. Aquaculture. 503: 254-266. DOI: https://doi.org/10.1016/j.aquaculture.2019.01.013
Owatari MS, Jesus GFA, Cardoso L, Lehmann NB, Martins ML, Mouriño JLP. 2020. Can histology and haematology explain inapparent Streptococcus agalactiae infections and asymptomatic mortalities on Nile tilapia farms? Res Vet Sci. 129: 13-20. DOI: https://doi.org/10.1016/j.rvsc.2019.12.018
Pepi M, Focardi S. 2021. Antibiotic-resistant bacteria in aquaculture and climate change: a challenge for health in the Mediterranean area. Int J Environ Res Public Health. 18 (11): 5723. DOI: https://doi.org/10.3390/ijerph18115723
Pereira SA, Jerônimo GT, Da Costa Marchiori N, De Oliveira HM, Owatari MS, Jesus GFA, Garcia P, Vieira FN, Martins ML, Mouriño JLP. 2017. Autochthonous probiotic Lactobacillus sp. in the diet of bullfrog tadpoles Lithobates catesbeianus improves weight gain, feed conversion and gut microbiota. Aquacult Nutr. 23 (5): 910-916. DOI: https://doi.org/10.1111/anu.12458
Pereira SA, Jesus GF, Pereira GV, Silva BC, Sá LS, Martins ML, Mouriño JL. 2020. The chelating mineral on organic acid salts modulates the dynamics and richness of the intestinal microbiota of a silver catfish Rhamdia quelen. Curr Microbiol. 77: 1483-1495. DOI: https://doi.org/10.1007/s00284-020-01962-z
Pokhrel H, Baishya S, Phukan B, Pillai D, Rather MA. 2018. Occurrence and distribution of multiple antibiotic resistance bacteria of public health significance in backwaters and aquaculture farm. Int J Curr Microbiol Appl Sci. 7: 975-987. DOI: https://doi.org/10.20546/ijcmas.2018.702.121
Prabu E, Rajagopalsamy CBT, Ahilan B, Jeevagan IJMA, Renuhadevi M. 2019. Tilapia-an excellent candidate species for world aquaculture: a review. Annu Res Rev Biol. 31 (3): 1-14. DOI: https://doi.org/10.9734/arrb/2019/v31i330052
Preena PG, Swaminathan TR, Kumar VJR, Singh ISB. 2020. Antimicrobial resistance in aquaculture: a crisis for concern. Biologia. 75, 1497-1517. DOI: https://doi.org/10.2478/s11756-020-00456-4
Raabe VN, Shane AL. 2019. Group B Streptococcus (Streptococcus agalactiae). Microbiol Spectr. 7 (2): 1010-1128. DOI: https://doi.org/10.1128/microbiolspec.gpp3-0007-2018
Raja RA, Jithendran KP. 2015. Aquaculture disease diagnosis and health management. In: Perumal S, AR T, Pachiappan P, editors. Advances in marine and brackishwater aquaculture. New Delhi: Springer. DOI: https://doi.org/10.1007/978-81-322-2271-2_23
Rector ME, Filgueira R, Bailey M, Walker TR, Grant J. 2023. Sustainability outcomes of aquaculture eco‐certification: challenges and opportunities. Rev Aquacul. 15 (2): 840-852. DOI: https://doi.org/10.1111/raq.12763
Ribeiro RP. 2001. Exotic species. In: Moreira HLM, Vargas L, Ribeiro RP, Zimmermann S, editors. Fundamentals of modern aquaculture. Chapter 1. Canoes: Ulbra. p. 91-121.
Ringø E. 2020. Probiotics in shellfish aquaculture. Aquacult Fish. 5 (1): 1-27. DOI: https://doi.org/10.1016/j.aaf.2019.12.001
Sáenz JS, Marques TV, Barone RSC, Cyrino JEP, Kublik S, Nesme J, Schloter M, Rath S, Vestergaard G. 2019. Oral administration of antibiotics increased the potential mobility of bacterial resistance genes in the gut of the fish Piaractus mesopotamicus. Microbiome. 7: 24. DOI: https://doi.org/10.1186/s40168-019-0632-7
Samsonova JV, Cannavan A, Elliott CT. 2012. A critical review of screening methods for the detection of chloramphenicol, thiamphenicol, and florfenicol residues in foodstuffs. Crit Rev Anal Chem. 42 (1): 50-78. DOI: https://doi.org/10.1080/10408347.2012.629951
Sebastião FDA, Lemos EG, Pilarski F. 2015. Validation of absolute quantitative real-time PCR for the diagnosis of Streptococcus agalactiae in fish. J Microbiol Methods. 119: 168-175. DOI: https://doi.org/10.1016/j.mimet.2015.10.021
Serrano PH. 2005. Responsible use of antibiotics in Aquaculture. FAO Tech Pap. 469. http://www.fao.org/3/a-a0282e.pdf.
Shen Y, Zhang R, Schwarz S, Wu C, Shen J, Walsh TR, Wang Y. 2020. Farm animals and aquaculture: significant reservoirs of mobile colistin resistance genes. Environ Microbiol. 22 (7): 2469-2484. DOI: https://doi.org/10.1111/1462-2920.14961
Smith P. 2008. Antimicrobial resistance in aquaculture. Rev Sci Tech. 27 (1): 243-264.
Sørum H. 2005. Antimicrobial drug resistance in fish pathogens. In: Aarestrup FM, editor. Antimicrobial resistance in bacteria of animal origin. Washington: ASM Press. p. 213-238. DOI: https://doi.org/10.1128/9781555817534.ch13
Suebsing R, Kampeera J, Tookdee B, Withyachumnarnkul B, Turner W, Kiatpathomchai W. 2013. Evaluation of colorimetric loop-mediated isothermal amplification assay for visual detection of Streptococcus agalactiae and Streptococcus iniae in tilapia. Lett Appl Microbiol. 57 (4): 317-324. DOI: https://doi.org/10.1111/lam.12114
Tavares-Dias M, Martins ML. 2017. An overall estimation of losses caused by diseases in the Brazilian fish farms. J Parasit Dis. 41 (4): 913-918. DOI: https://doi.org/10.1007/s12639-017-0938-y
Tóth AG, Csabai I, Judge MF, Maróti G, Becsei Á, Spisák S, Solymosi N. 2021. Mobile antimicrobial resistance genes in probiotics. Antibiotics. 10 (11), 1287. DOI: https://doi.org/10.3390/antibiotics10111287
Uddin GMN, Larsen MH, Christensen H, Aarestrup FM, Phu TM, Dalsgaard A. 2015. Identification and antimicrobial resistance of bacteria isolated from probiotic products used in shrimp culture. PLoS ONE. 10 (7): e0132338. DOI: https://doi.org/10.1371/journal.pone.0132338
Uma A, Rebecca G. 2018. Antibiotic resistance in bacterial isolates from commercial probiotics used in aquaculture. Inte J Curr Microbiol Appl Sci. 7 (1): 1737-1743. DOI: https://doi.org/10.20546/ijcmas.2018.701.210
Valero Y, Cuesta A. 2023. Reassortant viruses threatening fish aquaculture. Rev Aquacul. DOI: https://doi.org/10.1111/raq.12813
Valenti WC, Barros HP, Moraes-Valenti P, Bueno GW, Cavalli RO. 2021. Aquaculture in Brazil: past, present and future. Aquacult Rep. 19: 100611. DOI: https://doi.org/10.1016/j.aqrep.2021.100611
Valladão GMR, Gallani SU, Pilarski F. 2015. Phytotherapy as an alternative for treating fish disease. J Vet Pharmacol Ther. 38 (5): 417-428. DOI: https://doi.org/10.1111/jvp.12202
Van Doan H, Hoseinifar SH, Ringø E, Angeles Esteban M, Dadar M, Dawood MA, Faggio C. 2020. Host-associated probiotics: a key factor in sustainable aquaculture. Rev Fish Sci Aquacul. 28 (1): 16-42. DOI: https://doi.org/10.1080/23308249.2019.1643288
Van Doan H, Soltani M, Leitão A, Shafiei S, Asadi S, Lymbery AJ, Ringø E. 2022. Streptococcosis a re-emerging disease in aquaculture: significance and phytotherapy. Animals. 12 (18): 2443. DOI: https://doi.org/10.3390/ani12182443
Wang B, Thompson KD, Wangkahart E, Yamkasem J, Bondad‐Reantaso MG, Tattiyapong P, Jian J, Surachetpong W. 2023. Strategies to enhance tilapia immunity to improve their health in aquaculture. Rev Aquacul. 15: 41-56. DOI: https://doi.org/10.1111/raq.12731
Wang J, Macneil JD, Kay JF. 2011. Chemical analysis of antibiotic residues in food. John Wiley & Sons. p. 384.
Wang PC, Maekawa S, Chen SC. 2022. Streptococcosis. In: Kibenge FSB, Baldisserotto B, Chong RS-M, editors. Aquaculture pathophysiology. 1. Finfish diseases. Academic Press. p. 439-445. DOI: https://doi.org/10.1016/B978-0-12-812211-2.00035-4
Wanyan R, Pan M, Mai Z, Xiong X, Su W, Yang J, Yu Q, Wang X, Han Q, Li H, et al. 2023. Distribution and influencing factors of antibiotic resistance genes of crayfish (Procambarus clarkii) intestine in main crayfish breeding provinces in China. Sci Total Environ. 857: 159611. DOI: https://doi.org/10.1016/j.scitotenv.2022.159611
Watts JEM, Schreier HJ, Lanska L, Hale MS. 2017 The rising tide of antimicrobial resistance in aquaculture: sources, sinks and solutions. Mar Drugs. (15) 6: 158. DOI: https://doi.org/10.3390/md15060158
Wright A, Li X, Yang X, Soto E, Gross J. 2023. Disease prevention and mitigation in US finfish aquaculture: a review of current approaches and new strategies. Rev Aquacul. DOI: https://doi.org/10.1111/raq.12807
Xiong W, Sun Y, Zhang T, Ding X, Li Y, Wang M, Zeng Z. 2015. Antibiotics, antibiotic resistance genes, and bacterial community composition in freshwater aquaculture environment in China. Microb Ecol. 70 (2): 425-432. DOI: https://doi.org/10.1007/s00248-015-0583-x
Yang J, Wang C, Shu C, Liu L, Geng J, Hu S, Feng J. 2013. Marine sediment bacteria harbor antibiotic resistance genes highly similar to those found in human pathogens. Microb Ecol. 65: 975-981. DOI: https://doi.org/10.1007/s00248-013-0187-2
Ye L, Zhang L, Li X, Shi L, Huang Y, Wang HH. 2013. Antibiotic-resistant bacteria associated with retail aquaculture products from Guangzhou, China. J Food Prot. 76 (2): 295-301. DOI: https://doi.org/10.4315/0362-028X.JFP-12-288
Yuan K, Wang X, Chen X, Zhao Z, Fang L, Chen B, Jiang J, Luan T, Chen B. 2019. Occurrence of antibiotic resistance genes in extracellular and intracellular DNA from sediments collected from two types of aquaculture farms. Chemosphere. 234: 520-527. DOI: https://doi.org/10.1016/j.chemosphere.2019.06.085
Zhang J, Zhang X, Zhou Y, Han Q, Wang X, Song C, Wang S, Zhao S. 2023. Occurrence, distribution and risk assessment of antibiotics at various aquaculture stages in typical aquaculture areas surrounding the Yellow Sea. J Environ Sci. 126: 621-632. DOI: https://doi.org/10.1016/j.jes.2022.01.024
Zimmermann S, Kiessling A, Zhang J. 2023. The future of intensive tilapia production and the circular bioeconomy without effluents: biofloc technology, recirculation aquaculture systems, bio‐RAS, partitioned aquaculture systems and integrated multitrophic aquaculture. Rev Aquacul. 15: 22-31. DOI: https://doi.org/10.1111/raq.12744
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Marco Shizuo Owatari, José Luiz Pedreira Mouriño, Maurício Laterça Martins
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los autores de los artículos publicados en Marine and Fishery Sciences conservan los derechos de autor de sus artículos, a excepción de las imágenes de terceros y otros materiales añadidos por Marine and Fishery Sciences, que están sujetos a los derechos de autor de sus respectivos propietarios. Por lo tanto, los autores son libres de difundir y volver a publicar sus artículos, sujeto a los requisitos de los propietarios de derechos de autor de terceros y sujeto a que la publicación original sea completamente citada. Los visitantes también pueden descargar y reenviar artículos sujetos a los requisitos de citas. La capacidad de copiar, descargar, reenviar o distribuir cualquier material siempre está sujeta a los avisos de derechos de autor que se muestran. Los avisos de copyright deben mostrarse de manera prominente y no pueden borrarse, eliminarse u ocultarse, total o parcialmente. El autoalmacenamiento en servidores y repositorios de preimpresión está permitido para todas las versiones.
Esta revista ofrece a los autores una política de acceso abierto. Los usuarios pueden leer, descargar, copiar, distribuir, imprimir, buscar o vincular los textos completos de los artículos, o usarlos para cualquier otro propósito legal dentro de la licencia Creative Commons 4.0 (BY-NC-SA), sin solicitar permiso previo del editor o del autor. Esto está de acuerdo con la definición BOAI de acceso abierto.