Assessing the ecological vulnerability of Western Atlantic marine benthic gastropods

Authors

  • Alvar Carranza Departamento de Ecología y Gestión Ambiental, Centro Universitario Regional del Este (CURE), Universidad de la República, Av. Cachimba del Rey e/ Bvar. Artigas y Av. Aparicio Saravia, Maldonado, Uruguay - Museo Nacional de Historia Natural, Montevideo, Uruguay https://orcid.org/0000-0003-3016-7955
  • Matías Arim Departamento de Ecología y Gestión Ambiental, Centro Universitario Regional del Este (CURE), Universidad de la República, Av. Cachimba del Rey e/ Bvar. Artigas y Av. Aparicio Saravia, Maldonado, Uruguay

DOI:

https://doi.org/10.47193/mafis.3622023010509

Keywords:

Extinction risk, body size-trophic position relationship, conservation biology

Abstract

Assessing the extinction risk in marine invertebrates poses serious challenges to conservation biology, due to the magnitude of marine biodiversity, the inaccessibility of most of the marine realm, and the lack of appropriate data on population dynamics and ecology for most species. However, simple life history traits have a huge potential for preliminary screening criteria for assessing large numbers of species whose status is harsh or impossible to evaluate. Body size and trophic position could be strong predictors of extinction risk providing a general framework for the assessment of species vulnerability. We analyzed the Body Size-Trophic Position (BS-TP) relationship along 1,067 genera representing 4,256 nominal species of western Atlantic benthic gastropods. We found that a carnivore diet characterizes 67% of the genera and that, supporting theoretical predictions, the probability of being carnivores as a function of size showed a unimodal trend. For species with adult body sizes larger than 5 cm, a negative association between trophic position and body size was detected. This result points to an energetic restriction for the viability of large species, implying that organisms placed near the BS-TP boundary are extremely vulnerable to environmental changes. With this result, 109 genera from 42 families of carnivore gastropods and 33 genera from 19 families of herbivore gastropods that may be more vulnerable from the analyzed perspective were identified and ranked. Supporting these results, while the most vulnerable genera are not represented in global IUCN assessments, all our ‘top 10’ vulnerable families are being considered in National or Regional Red Lists. Prior to conducting regional or global conservation assessments for invertebrate taxa, screening methods should be strongly considered.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Ahyong S, Boyko CB, Bailly N, Bernot J, Bieler R, Brandão SN, Daly M, De Grave S, Gofas S, Hernandez F, et al. 2023. World Register of Marine Species (WoRMS). WoRMS Editorial Board.

Akin Swinemiller KO. 2008. Body size and trophic position in a temperate estuarine food web. Acta Oecol. 33 (2): 144.

Albano PG, Sabelli Bouchet P. 2011. The challenge of small and rare species in marine biodiversity surveys: microgastropod diversity in a complex tropical coastal environment. Biodiversity Conserv. 20 (13): 3223-3237.

Appeltans W, Ahyong ST, Anderson G, Angel MV, Artois T, Bailly N, Bamber R, Barber A, Bartsch I, Berta A, et al. 2012. The magnitude of global marine species diversity. Current Biol. 22 (23): 2189-2202.

Ardila N, Navas Grreyes J. 2002. Libro rojo de invertebrados marinos de Colombia. Bogotá: INVEMAR, Ministerio de Medio Ambiente. 177 p.

Arim M, Abades SR, Laufer G, Loureiro M, Marquet PA. 2010. Food web structure and body size: trophic position and resource acquisition. Oikos. 119 (1): 147-153.

Arim M, Berazategui M, Barreneche JM, Ziegler L, Zarucki Mabades SR. 2011. Determinants of density-body size scaling within food webs and tools for their detection. Adv Ecol Res. 45: 1-40.

Arim M, Borthagaray AI, Giacomini HC. 2016. Energetic constraints to food chain length in a metacommunity framework. Can J Fish Aquat. Sci. 73: 1-18.

Arim M, Bozinovic FA, Marquet P. 2007a. On the relationship between trophic position, body mass and temperature: reformulating the energy limitation hypothesis. Oikos. 116 (9): 1524-1530.

Arim M, Marquet PA, Jaksic FM. 2007b. On the relationship between productivity and food chain length at different ecological levels. Am Nat. 169 (1): 62-72.

Bouchet P, Lozouet P, Maestrati P, Heros V. 2002. Assessing the magnitude of species richness in tropical marine environments: exceptionally high numbers of molluscs at a New Caledonia site. Biol J Linnean Soc. 75 (4): 421-436.

Brose U, Jonsson T, Berlow EL, Warren P, Banasek-Richter C, Bersier LF, Blanchard JL, Brey T, Carpenter SR, Blandenier MFC, et al. 2006a. Consumer-resource body-size relationships in natural food webs. Ecology. 87 (10): 2411-2417.

Brose U, Williams RJ, Martinez ND. 2006b. Allometric scaling enhances stability in complex food webs. Ecol Lett. 9 (11): 1228-1236.

Brown JH, Gillooly JF, Allen AP, Savage VM, West GB. 2004. Toward a metabolic theory of ecology. Ecology. 85 (7): 1771-1789.

Brown JH, Marquet PA, Taper ML. 1993. Evolution of body size: consequences of an energetic deinition of fitness. Am Nat. 142: 573-584.

Burness GP, Diamond J, Flannery T. 2001. Dinosaurs, dragons, and dwarfs: the evolution of maximal body size. Proc Natl Acad Sci USA. 98: 14518-14523.

Burnham K, Panderson DR. 2002. Model selection and multimodel inference: a practical information-thoretic approach. Springer. 488 p.

Burress ED, Holcomb JM, Bonato K, Oarmbruster JW. 2016. Body size is negatively correlated with trophic position among cyprinids. R Soc Open Sci. 3 (5): 150652.

[CONAP] Consejo Nacional de Areas Protegidas. 2021. Lista de especies amenazadas de guatemala. [accessed 2023 Mar 29]. https://conap.gob.gt/wp-content/uploads/2021/09/LEA-2021-Fauna-3-sp.-Flora-No-Maderable.pdf.

Dantas DD, Caliman A, Guariento RD, Angelini R, Carneiro LS, Lima SMQ, Martinez PA, Attayde JL. 2019. Climate effects on fish body size‐trophic position relationship depend on ecosystem type. Ecogtaphy. 42: 1-8.

Dong Y, Huang X, Reid DG. 2015. Rediscovery of one of the very few ‘unequivocally extinct’ species of marine molluscs: Littoraria flammea (Philippi, 1847) lost, found-and lost again? J Molluscan Stud. 81 (3): 313-321.

Garay-Narváez L, Arim M, Flores JD, Ramos-Jiliberto R. 2013. The more polluted the environment, the more important biodiversity is for food web stability. Oikos. 122 (8): 1247-1253.

Halpern BS, Frazier M, Potapenko J, Casey KS, Koenig K, Longo C, Lowndes JS, Rockwood RC, Selig ER, Selkoe KA, et al. 2015. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat Commun. 6: 7615.

Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F, D’agrosa C, Bruno JF, Casey KS, Ebert C, Fox HE, et al. 2007. A global map of human impact on marine ecosystems. Science. 319: 948-951.

Hughes RN. 1980. Optimal foraging theory in the marine context. Oceanogr Mar Biol Ann Rev. 18: 423-481.

[ICMBio] Instituto Chico Mendes de Conservação da Biodiversidade. 2018. Livro vermelho da fauna brasileira ameaçada de extinção. Vol I. Brasília: ICMBio, Ministério do Meio Ambiente. 492 p.

Kohn AJ. 1983. Feeding biology of gastropods. In: Saleuddin ASM, Wilbur KM, editors. The Mollusca. Vol. 5. Physiology. Part 2. New York: Academic Press. p. 1-63.

Layman CA, Winemiller KO, Arrington A, Jepsen DB. 2005. Body size and trophic position in a diverse tropical food web. Ecology. 86: 2530-2535.

Lucifora LO, García VB, Mennin RC, Escalante AH, Hozbor NM. 2009. Effects of body size, age and maturity stage on diet in a large shark: ecological and applied implications. Ecol Res. 24: 109-118.

Marquet PA, Taper ML. 1998. On size and area: patterns of mammalian body size extremes across landmasses. Evol Theor. 12: 127-139.

May RM, Lawton JH, Stork NE. 1995. Assessing extinction rates. In: Lawton JW, May RM, editors. Extinction rates. Oxford: Oxford University Press. p. 1-24.

McCann KS. 2012. Food webs. Monographs in population biology. 50. Oxford, Princeton: Princeton University Press. 241 p.

McCann KS, Rasmussen JB, Umbanhowar J. 2005. The dynamics of spatially coupled food webs. Ecol Lett. 8: 513-523.

McNab BK. 2002. The physiological ecology of vertebrates. New York: Cornell University Press,

Ou C, Montaña CG, Winemiller KO. 2017. Body size-trophic position relationships among fishes of the lower Mekong basin. R Soc Open Sci. 4 (1): 160645.

Pawar S. 2015. The role of body size variation in community assembly. Adv Ecol Res. 52: 201-248.

Payne JL, Bush AM, Heim NA, Knope ML, McCauley DJ. 2016. Ecological selectivity of the emerging mass extinction in the oceans. Science. 353 (6305): 1284-1286.

Peters H, O’leary B, Hawkins J, Carpenter K, Roberts C. 2013. Conus: first comprehensive conservation red list assessment of a marine gastropod mollusc genus. PLoS ONE. 8 (12): e83353.

Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL, Joppa LN, Raven PH, Roberts CM, Sexton JO. 2014. The biodiversity of species and their rates of extinction, distribution, and protection. Science. 344 (6187): 1246752.

Purchon R. 1977. The biology of the mollusca, 2nd ed. Oxford: Pergamon.

Régnier C, Fontaine B, Bouchet P. 2009. Not knowing, not recording, not listing: numerous unnoticed mollusk extinctions. Conserv Biol. 23 (5): 1214-1221.

Rodríguez JP, García-Rawlins, Aojas-Suárez F. 2015. Libro rojo de la fauna venezolana. Provita y Fundación Empresas Polar. Caracas. [accessed 2023 Feb 3]. https://www.especiesamenazadas.org.

Romanuk TN, Hayward A, Hutchings JA. 2011. Trophic level scales positively with body size in fishes. Global Ecol Biogeogr. 20 (2): 231-240.

Rosenberg G. 2009. Malacolog version 4.1.1: A database of Western Atlantic marine mollusca. [accessed 2023 Mar 23]. http://www.malacolog.org.

Scarabino F. 2004. Conservación de la malacofauna uruguaya. Com Soc Malac Uruguay. 8 (82-83): 267-273.

Schoener TW. 1989. Food webs from the small to the large. Ecology. 70: 1559-1589.

Segura AM, Calliari D, Kruk C, Fort H, Izaguirre I, Saad JF, Arim M. 2015a. Metabolic dependence of phytoplankton species richness. Global Ecol Biogeogr. 24 (4): 472-482.

Segura AM, Fariña RA, Arim M. 2016. Exceptional body sizes but typical trophic structure in a Pleistocene food web. Biol Lett. 12: 20160228.

Segura A, Franco-Trecu V, Franco-Fraguas P, Arim M. 2015b. Gape and energy limitation determine a humped relationship between trophic position and body size. Can J Fish Aquat Sci. 72 (2): 198-205.

Sigwart JD, Chen C, Thomas EA, Allcock AL, Böhm M, Seddon M. 2019. Red Listing can protect deep-sea biodiversity. Nat Ecol Evol. 3 (8): 1134-1134.

Taylor JD, Reid DG. 1984. The abundance and trophic classification of molluscs upon coral reefs in the Sudanese Red Sea. J Nat Hist. 18: 175-209.

Todd JA. 2001. Introduction to molluscan life habits databases. NMITA, Neogene marine biota of tropical America. [accessed 2023 Feb 3]. https://nmita.rsmas.miami.edu/database/mollusc/mollusclifestyles.htm.

Urban D, Keitt TH. 2001. Landscape connectivity: a graph-theoretic perspective. Ecology. 82 (5): 1205-1218.

Valkenburgh BV, Wang X, Damuth J. 2004. Cope’s rule, hypercarnivory, and extinction in North American canids. Science. 306: 101-104.

Webb TJ, Mindel BL. 2015. Global patterns of extinction risk in marine and non-marine systems. Curr Biol. 25 (4): 506-511.

White EP, Ernest SKM, Kerkhoff AJ, Enquist BJ. 2007. Relationships between body size and abundance in ecology. Trends Ecol Evol. 22 (6): 323-330.

Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM. 2009. Mixed effects models and extensions in ecology with R. New York: Springer.

Downloads

Published

2023-04-11

How to Cite

Carranza, A. and Arim, M. (2023) “Assessing the ecological vulnerability of Western Atlantic marine benthic gastropods”, Marine and Fishery Sciences (MAFIS), 36(2), pp. 165–178. doi: 10.47193/mafis.3622023010509.