Greenhouse gas emissions, consumption, and fuel use intensity by an artisanal double-rig trawl fleet in southern Brazil

Authors

  • Dagoberto Port School of the Sea, Science and Technology, Universidade do Vale do Itajaí (Univali), Brazil
  • Fernando Niemeyer Fiedler Centro Nacional de Pesquisa e Conservação da Biodiversidade Marinha do Sudeste e Sul - CEPSUL
  • Fabiane Fisch School of the Sea, Science and Technology, Universidade do Vale do Itajaí (Univali), Brazil
  • Joaquim Olinto Branco School of the Sea, Science and Technology, Universidade do Vale do Itajaí (Univali), Brazil

DOI:

https://doi.org/10.47193/mafis.3522022010505

Keywords:

Artisanal trawl fishery, Shrimp, Energy efficiency, Greenhouse gases, Fuel use intensity, Carbon balance

Abstract

In Brazil, most national marine production is captured by artisanal fisheries. The present study was conducted in a traditional trawl fishing area for the capture of the Atlantic seabob shrimp Xiphopenaeus kroyeri in southern Brazil between 1996 and 2015 to obtain initial estimates of direct fuel inputs and greenhouse gas emissions. The data includes vessel characteristics, total and seabob shrimp production, and trawl duration. Approximately four million liters of fuel were consumed for an estimated catch of around 148,000 kg of fish (26.4 liters/kg captured), of which 19,000 kg were seabob shrimp (206 liters/kg captured) or 13% of total production. The carbon emitted by this fleet was almost three million GgC, between 401 and 666 tons per year. Although the number of vessels has increased over the years, catches, especially of seabob shrimp, have declined sharply, indicating over-exploitation of this resource, and reinforcing the urgent need to create management programs and selective technologies for this modality.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Dagoberto Port, School of the Sea, Science and Technology, Universidade do Vale do Itajaí (Univali), Brazil

Fernando Niemeyer Fiedler, Centro Nacional de Pesquisa e Conservação da Biodiversidade Marinha do Sudeste e Sul - CEPSUL

Fabiane Fisch, School of the Sea, Science and Technology, Universidade do Vale do Itajaí (Univali), Brazil

Joaquim Olinto Branco, School of the Sea, Science and Technology, Universidade do Vale do Itajaí (Univali), Brazil

References

ABDALLAH PR, BACHA CJC. 1999. Evolução da atividade pesqueira no Brasil: 1960-1994. Rev Teor Evid Econ. 7 (13): 9-24.

ACAUAN RC, BRANCO JO, TEIXEIRA B, RODRIGUES FILHO JL, POLETTE M. 2018a. A pesca artesanal no município de Penha (SC): uma releitura do contexto socioeconômico da atividade e da capacidade adaptativa do setor. Desenvolv Meio Ambiente 49: 150–166. DOI: https://doi.org/10.5380/dma.v49i0.58078

ACAUAN RC, TEIXEIRA B, POLETTE M, BRANCO JO. 2018b. Aspectos legais da pesca artesanal do camarão sete-barbas no município de Penha, SC: o papel do defeso. Interações 19 (3): 543-556. DOI: http://dx.doi.org/10.20435/inter.v19i3.15 81

ALMEIDA LR, BRANCO JO. 2002. Aspectos biológicos de Stellifer stellifer na pesca artesanal do camarão sete-barbas, Armação do Itapocoroy, Penha, Santa Catarina, Brasil. Rev Bras Zool. 19 (2): 601-610. DOI: https://doi.org/10.1590/S0101-81752002000 200016

ÁLVARES JÚNIOR OM, LINKE RRA. 2002. Metodologia simplificada de cálculo das emissões de gases do efeito estufa de frotas de veículos no Brasil. CETESB, São Paulo. 12 p.

AZEVEDO VG, BARBOSA MN, ABDALLAH PR, ROSSI-WONGTSCHOWSKI CLDB. 2014. Custos operacionais de captura da frota camaroeira do litoral norte do estado de São Paulo: análise comparada entre valores de mercado e valores de cooperados. Braz J Aquat Sci Technol. 18 (1): 71-79. DOI: https://doi.org/10.14210/bjast.v1 8n1

BAIL GC, BRANCO JO. 2003. Ocorrência, abundância e diversidade da ictiofauna na pesca do camarão sete-barbas, na Região de Penha, SC. Notas Téc. FACIMAR. 7: 73-82. DOI: https://doi.org/10.14210/bjast.v7n1.p73-82

BAIL GC, BRANCO JO. 2007. Pesca artesanal do camarão sete-barbas: uma caracterização sócio-econômica na Penha, SC. Braz. J Aquat Sci Technol. 11 (2): 25-32. DOI: http://doi.org/10.14210/bjast

BARRILI GHC, FILHO JLR, DO VALE JG, PORT D, VERANI JR, BRANCO JO. 2021. Role of the habitat condition in shaping of epifaunal macroinvertebrate bycatch associated with small-scale shrimp fisheries on the Southern Brazilian Coast. Reg Stud Mar Sci. 43. DOI: https://doi.org/10.1016/j.rsma.2021.101695

BRANCO JO, FRACASSO HAA. 2004. Ocorrência e abundância da carcinofauna acompanhante na pesca do camarão sete-barbas, Xiphopenaeus kroyeri Heller (Crustacea, Decapoda), na Armação do Itapocoroy, Penha, Santa Catarina, Brasil. Rev Bras Zool. 21 (2): 295-301. DOI: https://doi.org/10.1590/S0101-81752004 000200022

BRANCO JO. 2005. Biologia e pesca do camarão sete-barbas Xiphopenaeus kroyeri (Heller) (Crustacea, Penaeidae), na Armação do Itapocoroy, Penha, Santa Catarina. Brasil. Rev Bras Zoo. 22: 1050-1062. DOI: http://dx.doi.org/ 10.1590/S0101-81752005000400034

BRANCO JO, VERANI JR. 2006. Pesca do camarão sete-barbas e sua fauna acompanhante, na Armação do Itapocoroy, Penha, SC. In: Branco JO, Marenzi AWC, organizers. Bases ecológicas para um desenvolvimento sustentável: estudos de caso em Penha, SC. Editora da UNIVALI, Itajaí, Brazil. p. 153-170.

BRANCO JO, SANTOS LR, BARBIERI E, SANTOS MCF, RODRIGUES-FILHO JL. 2013. Distribuição espaço-temporal das capturas do camarão sete-barbas na Armação do Itapocoroy, Penha, SC. Bol Inst Pesca. 39 (3): 237-250. DOI: http://doi.org/10.20950/1678-2305.2013v39n 3p237

BRASIL. 1999. Ministério de Minas e Energia. Balanço energético nacional. Brasília. 153 p.

BRASIL. 2006. Ministério da Ciência e Tecnologia. Emissões de dióxido de carbono por queima de combustíveis: abordagem top-down. Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa em Engenharia – COPPE. Rio de Janeiro-RJ.

COELHO VF, BRANCO J, HARMS DIAS MA. 2016. Indicadores de produtividade aplicados à pesca artesanal do camarão sete-barbas, Penha, SC, Brasil. Rev Ambient Água. 11 (1): 98-109. DOI: http://doi.org/10.4136/ambi-agua.165 9

CROWDER LB, HAZEN EL, AVISSAR N, BJORKLAND R, LATANICH C, OGBURN MB. 2008. The impacts of fisheries on marine ecosystems and the transition to ecosystem-based management. Annu Rev Ecol Evol Syst. 39: 259-78. DOI: https://doi.org/10.1146/annurev.ecols ys.39.110707.173406

DEGNBOL P. 2009. Climate change and fisheries management. In: Abstracts from workshop on changes in marine and terrestrial productivity under climate change impact and feedback, Technical University of Denmark, 12 13 May. p. 15-16.

DIAS NETO J, OLIVEIRA DIAS J DE F. 2015. O uso da biodiversidade aquática no Brasil: uma avaliação com foco na pesca. Brasília, IBAMA. 288 p.

[EPE] Empresa de Pesquisa Energética (Brasil). 2011. Balanço energético nacional 2011: ano base 2010. Rio de Janeiro. 266 p.

[FAO] Food and Agriculture Organization (Italy). 2007. The State of World Fisheries and Aquaculture 2006. Rome. 162 p.

[FAO] Food and Agriculture Organization (Italy). 2020. The State of World Fisheries and Aquaculture, sustainability in action. Rome. 224 p. DOI: https://doi.org/10.4060/ca9229en

FIEDLER FN, SALES G, GIFFONI BB, MONTEIRO-FILHO ELA, SECCHI ER, BUGONI L. 2012. Driftnet fishery threats sea turtles in the Atlantic Ocean. Biodivers Conserv. 21: 915-931.

FIEDLER FN, PORT D, GIFFONI B, SALES G, FISH F. 2017. Pelagic longline fisheries in southeastern/south Brazil. Who cares about the law? Mar Policy. 77: 56-64.

FIEDLER FN, PAZETO DM, LACERDA LLV. 2020. High mortality rates of Chelonia mydas in a small-scale bottom gillnet fishery in the south-west Atlantic Ocean. Aquatic Conserv: Mar. Freshw. Ecosyst. 30 (19): 1902-1909.

FULTON S. 2010. Fish and fuel: life cycle greenhouse gas emissions associated with icelandic cod, alaskan pollock, and alaskan pink salmon fillets delivered to the United Kingdom. [Master Thesis]. Dalhousie University Halifax, Nova Scotia. 123 p.

FURUYA A, FUKAMI M, ELLINGSEN H, KAGAYA S. 2011. A survey on energy consumption in fisheries, and measures to reduce CO2 emissions. ERSA conference papers (ersa11p1322), European Regional Science Association. [accessed 2021 Dec 10]. http://www-sre.wu.ac.at/ersa/ersaconfs/ersa 11/e110830aFinal01322.pdf.

GARCIA SM, GRAINGER RJR. 2005. Gloom and doom? The future of marine capture fisheries. Philos Trans Roy Soc. B. 360: 21-46. DOI: http://dx.doi.org/10.1098/rstb.2004.1580

GRAFTON RQ, HILBORN R, RIDGEWAY L, SQUIRES D, WILLIAMS M, GARCIA S, GROVES T, JOSEPH J, KELLEHER K, KOMPAS T, et al. 2008. Positioning fisheries in a changing world. Mar Policy. 32: 630-634. DOI: http://doi.org/10.1016/j. marpol.2007.11.003

HAIMOVICI M, CERGOLE MC, LESSA R, MADUREIRA LS, JABLONSKI S, ROSSI-WONGSTCHOWSKI CLDB. 2006. Capítulo 2. Panorama Nacional. In: MMA/SQA. Programa REVIZEE: Avaliação do Potencial Sustentável de Recursos Vivos na Zona Econômica Exclusiva. Relatório Executivo. p. 79-126.

HALL MA, ALVERSON DL, METUZALS KI. 2000. By-catch: Problems and Solutions. Mar Pollut Bull. 41: 204-219.

[IBGE] Instituto Brasileiro de Geografia e Estatística (Brasil). 2017. Estimativas da população residente com data de referência 1º de julho de 2017. Diretoria de Pesquisas, Coordenação de População e Indicadores Sociais. [accessed 08 Nov 2021] http://cod.ibge.gov.br/2VVPS.

[IPCC] Intergovernmental Panel on Climate Change. 1996. Good Practice Guidance and Uncertainty Management in National Greenhouse Inventories. Revised 1996 IPCC Guidelines for National Greenhouse Gas. United Nations Environment Program, the Organization for Economic Co-operation and Development and The International Energy Agency. London. United Kingdom.

JHA PN, EDWIN L. 2019. Energy use in fishing. In: Edwin L, Thomas SN, Remesan MP, Muhamed Ashraf P, Baiju MV, Manju Lekshmi N, Madhu VR, editors. ICAR Winter school training manual: Responsible fishing: Recent advances in resource and energy conservation. ICAR-CIFT, Kochi. 424 p.

KAISER MJ, CLARKE KR, HINZ H, AUSTEN MCV, SOMERFIELD PJ, KARAKASSIS I. 2006. Global analysis of response and recovery of benthic biota to fishing. Mar Ecol Prog Ser. 311: 1-14. DOI: http://dx.doi.org/10.3354/meps311001

KAISER MJ. 2019. Recent advances in understanding the environmental footprint of trawling on the seabed. Can J Zool. 97 (9): 755-762. DOI: https://doi.org/10.1139/cjz-2018-0248

KELLEHER K. 2008. Descartes en la captura marina mundial. Una actualización. FAO Fish. Tech. Pap. 470. Fisheries Dept. Rome. 147 p.

MACÊDO RF. 2004. Inventário de emissões de dióxido de carbono (CO2) geradas por fontes móveis no estado do Rio Grande do Norte – período de janeiro de 2003 a junho de 2004. Holos. 2. DOI: https://doi.org/10.15628/holos.200 4.35

MEDEIROS RP, SERAFINI TZ, MCCONNEY P. 2014. Enhancing Ecosystem stewardship in small-scale fisheries: prospects for Latin America and the Caribbean. Desenvolv Meio Ambiente. 32. DOI: http://dx.doi.org/10.5380/dma. v32i0.38819

MENEZES NA, BUCKUP PA, DE FIGUEIREDO JL, DE MOURA RL, editors. 2003. Catálogo das espécies de peixes marinhas do Brasil. São Paulo, Museu de Zoologia USP. 160 p.

NOTTI E, SALA A, BUGLIONI G. 2012. Energy audits on board fishing vessels: energy profiling can lead to reduced fuel consumption. Eurofish Mag. 6: 27-29.

OLIVEIRA LEIS M, BARRAGÁN-PALADINES MJ, SALDAÑA A, BISHOP D, JIN JH, KEREŽI V, AGAPITO M, CHUENPAGDEE R. 2018. Overview of small-scale fisheries in Latin America and the Caribbean: Challenges and Prospects. In: SALAS S, BARRAGÁN-PALADINES MJ, CHUENPAGDEE R, editors. Viability and Sustainability of Small-Scale Fisheries in Latin America and The Caribbean. MARE Publication Series 19.

OSTROM E. 2007. A diagnostic approach for going beyond panaceas. PNAS. 104 (39): 15181-15187. DOI: https://doi.org/10.1073/pnas.0702288104

PARKER RWR, BLANCHARD JL, GARDNER C, GREEN BS, HARTMANN K, TYEDMERS PH, WATSON RA. 2018. Fuel use and greenhouse gas emissions of world fisheries. Nature - Climate Change. 8: 333-337. DOI: http://doi.org/10.1038/s41558-018-0117-x

PAULY D, CHRISTENSEN V. 1995. Primary production required to sustain global fisheries. Nature. 374: 255–257. DOI: https://doi.org/10.1038 /376279b0

PAULY D, CHRISTENSEN V, DALSGAARD J, FROESE R, TORRES F. 1998. Fishing down marine food webs. Science. 279: 860-863. DOI: http://dx.doi.org/10.1126/science.279.5352.860

PAULY D, WATSON R, ALDER J. 2005. Global trends in world fisheries: impacts on marine ecosystems and food security. Philos Trans Roy Soc. B. 360: 5-12. DOI: http://dx.doi.org/10.1098/rstb.2004.1574

[PCSPA-SC] Projeto de Caracterização Socioeconômica da Atividade de Pesca e Aquicultura. 2015. Relatório Técnico Final Vol. 1. BR 04042006/14, junho/2015. 1200 p.

PEREZ JAA, PEZZUTO PR, WAHRLICH R, SOARES ALS. 2009. Deep-water fisheries in Brazil: history, status and perspectives. Lat Am J Aquat Res. 37 (3): 513-542. DOI: http://dx.doi.org/ 10.3856/vol37-issue3-fulltex-17

PINTO FCV, SANTOS RNS. 2004. Potenciais de redução de emissões de dióxido de carbono no setor de transportes: um estudo de caso da ligação hidroviária Rio-Niterói. Engevista. 6 (3): 64-74. DOI: https://doi.org/10.22409/engevista.v6i3.145

[PMAP-SC] Projeto de Monitoramento da Atividade Pesqueira no estado de Santa Catarina. 2020. Relatório Técnico Final, vol. 1, monitoramento da atividade pesqueira, BR 08042054/20. Outubro 2020. 78 p.

PORT D. 2015. O impacto da pesca industrial de arrasto sobre os ecossistemas da margem continental do Sudeste/Sul do Brasil. [PhD thesis]. Universidade do Vale do Itajaí. 161 p.

PORT D, PEREZ JAA, DE MENEZES JT. 2016. Energy direct inputs and greenhouse gas emissions of the main industrial trawl fishery of Brazil. Mar Pollut Bull. 107: 251-260. DOI: http://dx.doi.org/ 10.1016/j.marpolbul.2016.03.062

SALAS S, CHUENPAGDEE R, SEIJO JC, CHARLES A. 2007. Challenges in the assessment and management of small-scale fisheries in Latin America and the Caribbean. Fish Res. 87: 5- 16. DOI: https://doi.org/10.1016/j.fishres.2007.06. 015

SALAS S, BARRAGÁN-PALADINES MJ, CHUENPAGDEE R, editors. 2018. Viability and sustainability of small-scale fisheries in Latin America and the Caribbean. MARE Publication Series. Springer International Publishing AG. DOI: https://doi.org/10.1007/978-3-319-76078-0_1

SALES G, GIFFONI BB, FIEDLER FN, AZEVEDO VG, KOTAS JE, SWIMMER Y, BUGONI L. 2010. Circle hook effectiveness for the mitigation of sea turtle bycatch and capture of target species in a Brazilian pelagic longline fishery. Aquatic Conserv: Mar Freshw Ecosyst. 20: 428-436. DOI: http://doi.org/10.1002/aqc.1106

SCHAU EM, ELLINGSEN H, ENDAL A, ASNONDSEN S. 2009. Energy consumption in the Norwegian fisheries. J Clean Prod. 17: 325-334. DOI: http://dx.doi.org/10.1016/j.jclepro.2008.08.015

SQUIRES D. 2009. Opportunities in social science research. In: BEAMISH RJ, ROTHSCHILD BJ, editors. The Future of Fisheries Science in North America. Fish Fish. Series 31. Springer Science, New York. 752 p.

SUURONEN P, CHOPIN F, GLASS C, LØKKEBORG S, MATSUSHITA Y, QUEIROLO D, RIHAN D. 2012. Low impact and fuel efficient fishing: looking beyond the horizon. Fish Res. 119: 135-146. DOI: http://dx.doi.org/10.1016/j.fishres.2011.12.009

THURSTAN RH, BROCKINGTON S, ROBERTS CM. 2010. The effects of 118 years of industrial fishing on UK bottom trawl fisheries. Nat Commun. 1: 1-6. DOI: http://dx.doi.org/10.1038/ncomms1013

TYEDMERS P. 2004. Fishing and energy use. Encyclopedia of Energy. Elsevier. Amsterdam. Vol. 2. p. 683-693.

TYEDMERS P, WATSON R, PAULY D. 2005. Fueling global fishing fleets. Ambio. 34 (8): 635-638.

TYEDMERS P, PARKER R. 2012. Fuel consumption and greenhouse gas emissions from global tuna fisheries: a preliminary assessment. ISSF Technical Report 2012 03. International Seafood Sustainability Foundation, McLean, Virginia, USA.

WILEMAN D. 1984. Project Oilfish. Investigation of the resistance of trawl gear. The Danish Institute of Fisheries Technology. 42 p.

WINTHER U, ZIEGLER F, SKONTORP HOGNES E, EMANUELSSON A, SUND V, ELLINGSEN H. 2009. Carbon footprint and energy use of Norwegian seafood products. SINTEF Report Nr. SHF80 A096068. 91 p.

ZAMBONI A, DIAS M, IWANICKI L. 2020. Auditoria da pesca: uma avaliação integrada da governança, da situação dos estoques e das pescarias. First edition. Oceana Brasil, Brasília. [accessed 2021 Dec 21]; https://static.poder360.com.br/2021/04/auditoria-da-pesca-brasil-2020.pdf.

ZIEGLER F, HANSSON P-A. 2003. Emissions from fuel combustion in Swedish cod fishery. J Clean Prod. 11: 303-314. DOI: http://dx.doi.org/10.1016/S0959-6526(02)00050-1.

ZIEGLER F. 2006. Environmental life cycle assessment of Norway lobster (Nephrops norvegicus) caught along the Swedish west coast by creels. Conventional trawls and species-selective trawls: a data report SIK report 746. SIK. Göteborg. 36 p.

ZIEGLER F, VALENTINSSON D. 2008. Environmental life cycle assessment of Norway lobster (Nephrops norvegicus) caught along the Swedish west coast by creels and conventional trawls - LCA methodology with case study. Int J Life Cycle Assess. 13: 487-497.

Downloads

Published

2022-03-30

How to Cite

Port, D., Niemeyer Fiedler, F., Fisch, F. and Olinto Branco, J. (2022) “Greenhouse gas emissions, consumption, and fuel use intensity by an artisanal double-rig trawl fleet in southern Brazil”, Marine and Fishery Sciences (MAFIS), 35(2), pp. 227–241. doi: 10.47193/mafis.3522022010505.