The color of EPEA: variability in the in situ bio-optical properties in the period 2000-2017

Authors

  • M. Guillermina Ruiz Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo Nº 1, Escollera Norte, B7602HSA - Mar del Plata, Argentina - Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
  • Vivian A. Lutz Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo Nº 1, Escollera Norte, B7602HSA - Mar del Plata, Argentina - Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
  • Valeria Segura Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo Nº 1, Escollera Norte, B7602HSA - Mar del Plata, Argentina
  • Carla F. Berghoff Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo Nº 1, Escollera Norte, B7602HSA - Mar del Plata, Argentina
  • Rubén M. Negri Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo Nº 1, Escollera Norte, B7602HSA - Mar del Plata, Argentina

DOI:

https://doi.org/10.47193/mafis.3322020301105

Keywords:

Chlorophyll-a, Bio-optical properties, Inter-annual variability, EPEA, South Atlantic

Abstract

The ‘Estación Permanente de Estudios Ambientales’ (EPEA, 38° 28′ S-57° 41′ W, Argentina) is an ecological time series of in situ observations started in 2000 aiming to assess changes in the marine environment and plankton communities under a global change scenario. Bio-optical properties are studied at EPEA since the color of the ocean undergoes temporal fluctuations, both for natural and anthropogenic causes. Here we assessed whether bio-optical properties at EPEA have changed during 2000-2017, identifying the occurrence of special events and inter-annual trends in these properties. An increasing trend in chlorophyll-a concentration, possibly due to an increase in the smaller fraction of phytoplankton was observed. Although the absorption coefficient of phytoplankton did not follow a significant trend, it represented the occurrence of special events of high biomass suggesting that satellite information should be useful for the study site. The specific absorption coefficient of phytoplankton and the blue to red absorption ratio showed high values in summer and low in winter, according to the probable dominance of different size cells and their expected acclimation to the light regime. These results emphasize the relevance of periodic bio-optical in situ observations in understanding coastal ecosystems in a context of climate change.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Auad G, Martos P. 2012. Climate vriability of the Northern Argentinean Shelf Circulation: impact on Engraulis Anchoita. Int J Ocean Clim Syst. 3 (1): 17-43.

Babin M, Stramski D, Ferrari GM, Claustre H, Bricaud A, Obolensky G, Hoepffner N. 2003. Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe. J Geophys Res. 108 (C7, 3211). DOI: https://doi.org/10.1029/2001JC000882

Baldoni A. 2010. Clasificación temporal de los datos ocanográficos sobre la Plataforma Continental y Océano Atlántico Sudoccidental. Inf Invest INIDEP Nº 25/2010. 22 p.

Bricaud A, Babin M, Morel A, Claustre H. 1995. Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization. J Geophys Res. 100 (NO. C7): 13321-13332.

Carreto JI, Lutz VA, Carignan MO, Cucchi Colleoni AD, De Marco SG. 1995. Hydrography and chlorophyll a in a transect from the coast to the shelf-break in the Argentinian Sea. Cont Shelf Res. 15 (2/3): 315-336.

Carreto JI, Montoya NG, Akselman R, Negri RM, Carignan MO, Cucchi Colleoni AD. 2004. Differences in the PSP toxin profiles of Mytilus edulis during spring and autumn blooms of Alexandrium tamarense off Mar del Plata coast, Argentina. In: Steidinger KA, Landsberg JH, Tomas CR, Vargo GA, editors. Harmful Algae 2002. St. Petersburg, Florida, USA: Florida Fish and Wildlife Conservation Commission, Florida Institute of Oceanography, and Intergovernmental Oceanographic Commission of UNESCO. p. 100-102.

Ciotti ÁM, Lewis MR, Cullen JJ. 2002. Assessment of the relationship between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient. Limnol Oceanogr. 47 (2): 404-417.

Chisholm SW. 1992. Phytoplankton size. In: Woodhead PGFAAD, editor. Primary productivity and biogeochemical cycles in the sea. New York and London: Plenum Press. p 213-237.

Davies L, Gather U. 1993. The identification of multiple outliers. J Am Stat Assoc. 88 (423): 782-792.

Delgado AL, Guinder VA, Dogliotti AI, Zapperi G, Pratolongo PD. 2019. Validation of MODIS-Aqua bio-optical algorithms for phytoplankton absorption coefficient measurement in optically complex waters of El Rincón (Argentina). Cont Shelf Res. 173: 73-86.

Ducklow HW, Doney SC, Steinberg DK. 2009. Contributions of long-term research and time-series observations to marine ecology and biogeochemistry. Annu Rev Mar Sci. 1 (1): 279-302.

Dutkiewicz S, Hickman AE, Jahn O, Henson S, Beaulieu C, Monier E. 2019. Ocean colour signature of climate change. Nature Communications. 10 (1): 578. DOI: https://doi.org/10.1038/s41467-019-08457-x

Duyens LNM. 1956. The flattering of the absorption spectrum of suspensions, as compared to that of solutions. Biochim Biophys Acta. 19: 1-12.

Ferreira A, Ciotti AM, Mendes CRB, Uitz J, Bricaud A. 2009. Phytoplankton light absorption and the package effect in relation to photosynthetic and photoprotective pigments in the northern tip of Antarctic Peninsula. J Geophys Res (C Oceans). 122 (9): 7344-7363.

Henson SA, Sarmiento JL, Dunne JP, Bopp L, Lima I, Doney SC, John J, Beaulieu C. 2010. Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity. Biogeosciences. 7 (2): 621-640.

Hernández DR, Mendiolar M. 2018. Manual del Programa CSMK. Implementación de un Test no paramétrico para datos estacionales con dependencia serial y datos faltantes. Inf. Ases y Transf INIDEP Nº 143/2018. 13 p.

Hirsch RM, Slack JR. 1984. A Nonparametric Trend test for seasonal data with serial dependence. Water Resour Res. 20 (6): 727-732.

Hoepffner N, Sathyendranath S. 1992. Bio-optical characteristics of coastal waters: absorption spectra of phytoplankton and pigment distribution in the western North Atlantic. Limnol Oceanogr. 37 (8): 1660-1679.

Holm-Hansen O, Lorenzen CJ, Holmes RW, Strickland DH. 1965. Fluorometric determination of chlorophyll. Journal du Conseil. 30 (1): 3-15.

[IOCCG] International Ocean-Colour Coordinating Group. 2020. Synergy between ocean colour and biogeochemical/ecosystem models. In: Dutkiewicz S, editor. Report of the International Ocean-Colour Coordinating Group (IOCCG). Dartmouth, NS, Canada. Nº 19. 184 p. DOI: http://dx.doi.org/10.25607/OBP-711

[IPCC] Intergovernmental Panel on Climate Change. 2019. Summary for policymakers. In: Pörtner H-O, Roberts DC, Masson-Delmotte V, Zhai P, Tignor M, Poloczanska E, Mintenbeck K, Alegría A, Nicolai M, Okem A, et al., editors. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. https://www.ipcc.ch/srocc/chapter/summary-for-policymakers/.

Johnsen G, Sakshaug E. 1996. Light harvesting in bloom-forming marine phytoplankton: species-specificity and photoacclimation. Sci Mar. 60 (1): 47-56.

Kishino M, Takahashi M, Okami N, Ichimura S. 1985. Estimation of the spectral absorption coefficients of phytoplankton in the sea. Bull Mar Sci. 37 (2): 634-642.

Longhurst A. 1995. Seasonal cycles of pelagic production and consumption. Prog Oceanogr. 36: 77-167.

Lutz VA, Sathyendranath S, Head EJH, Li WKW. 2001. Changes in the in vivo absorption and fluorescence excitation spectra with growth irradiance in three species of phytoplankton. J Plankton Res. 23 (6): 555-569.

Lutz VA, Sathyendranath S, Head EJH, Li WKW. 2003. Variability in pigment composition and optical characteristics of phytoplankton in the Labrador Sea and the Central North Atlantic. Mar Ecol Prog Ser. 260: 1-18.

Lutz VA, Segura V, Dogliotti AI, Gagliardini DA, Bianchi A, Balestrini CE. 2010. Primary Production in the Argentine Sea during spring estimated by field and satellite models. J Plankton Res. 32 (2): 181-195.

Lutz VA, Subramaniam A, Negri RM, Silva RI, Carreto JI. 2006. Annual variations in bio-optical properties at the ‘Estación Permanente de Estudios Ambientales (EPEA)’ coastal station, Argentina. Cont Shelf Res. 26 (10): 1093-1112.

Marrari M, Piola AR, Valla D. 2017. Variability and 20-Year Trends in Satellite-Derived Surface Chlorophyll Concentrations in Large Marine Ecosystems around South and Western Central America. Front Mar Sci. 4 (372).

Millán-Núñez E, Sieracki ME, Millán-Núñez R, Lara-Lara JR, Gaxiola-Castro G, Trees CC. 2004. Specific absorption coefficient and phytoplankton biomass in the southern region of the California current. Deep-Sea Res II. 51: 817-826.

Mitchell BG. 1990. Algorithms for determining the absorption coefficient of aquatic particulates using the quantitative filter technique (QFT). Ocean Optics X. Orlando, FL, United States: SPIE. p. 137-148.

Negri RM, Carreto JI, Lutz VA, Carignan MO, Cucchi Colleoni AD. 2003. Condiciones ambientales en la estación EPEA (38° 28' S-57° 41' W) durante un ciclo anual. V Jornadas Nacionales de Ciencias del Mar. Mar del Plata, Argentina. 146.

Negri RM, Lutz VA, Silva RI, Carignan MO, Ruiz MG, Hozbor C, Molinari GN, Montoya NG, Segura V, Berghoff CF, et al. 2015. Eventos especiales en magnitud y génesis en la serie de tiempo ambiental y de plancton “EPEA” en el Mar Argentino. In: Campos N, Ospino M, Arellano E, Garay C, Rodríguez L, editors. XVI Congreso Latinoamericano de Ciencias del Mar - Colacmar y XVI Seminario Nacional de Ciencias y Tecnologías del Mar. Santa Marta, Colombia: Entrelibros e-book solutions. 575 p.

Negri RM, Silva RI. 2003. Contribución de las distintas fracciones del fitoplancton a la biomasa fototrófica durante un ciclo anual en la estación EPEA (38° 28’ S-57° 41’ W). V Jornadas Nacionales de Ciencias del Mar. Mar del Plata, Argentina. 147.

Negri R, Silva RI. 2011. Estructura de la comunidad del fitoplancton en la estación costera EPEA durante el período 2000-2010 (provincia de Buenos Aires, Argentina). Bol Soc Argent Bot. 46 (Supl): 99-100.

O’brien T, RE, Lorenzoni L, Isensee K, Valdes L, editors. 2017. What are Marine Edcological Time Series telling us about the ocean? A status report. IOC-UNESCO. IOC Technical Series. Nº 129. 297 p.

Prieur L, Sathyendaranath S. 1981. An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials. Limnol Oceanogr. 26 (4): 671-689.

Richardson K, Beardall J, Raven JA. 1983. Adaptation of unicellular algae to irradiance: an analysis of strategies. New Phytol. 93: 157-191.

Riley GA. 1946. Factors controlling phytoplankton populations on Georges bank. J Mar Res. 6: 54-73.

Ruiz MG. 2018. Variabilidad de las propiedades bio-ópticas en la serie de tiempo Estación Permanente de Estudios Ambientales (EPEA) complementando mediciones in situ y satelitales [PhD thesis]. Mar del Plata: Universidad Nacional de Mar del Plata. 137 p.

Ruiz MG, Lutz VA, Frouin R. 2017. Spectral absorption by marine chromophoric dissolved organic matter: laboratory determination and piecewise regression modeling. Mar Chem. 194: 10-21.

Sathyendranath S, Lazzara L, Prieur L. 1987. Variations in the spectral values of specific absorption of phytoplankton. Limnol Oceanogr. 32 (2): 403-415.

Segura V, Lutz VA, Dogliotti A, Silva RI, Negri RM, Akselman R, Benavides H. 2013. Phytoplankton types and primary production in the Argentine Sea. Mar Ecol Prog Ser. 491: 15-31.

Silva RI, Negri RM, Lutz VA. 2009. Summer succession of ultraphytoplankton at the EPEA coastal station (Northern Argentina). J Plankton Res. 31 (4): 447-458.

Sosik HM, Mitchell BG. 1995. Light absorption by phytopIankton, photosynthetic pigments and detritus in the CaIifornia current System. Deep-Sea Res. 42 (10): 1717-1748.

Williams GN, Larouche P, Dogliotti AI, Latorre MP. 2018. Light absorption by phytoplankton, non-algal particles, and dissolved organic matter in San Jorge Gulf in summer. Oceanography. 31 (4): 40-49.

Downloads

Published

2020-12-22

How to Cite

Ruiz, M. G., Lutz, V. A., Segura, V. ., Berghoff, C. F. . and Negri, R. M. (2020) “The color of EPEA: variability in the in situ bio-optical properties in the period 2000-2017”, Marine and Fishery Sciences (MAFIS), 33(2), pp. 205–225. doi: 10.47193/mafis.3322020301105.

Issue

Section

Marine Impacts in the Anthropocene