Morphological shell variation of Zidona dufresnei (Caenogastropoda: Volutidae) from the Southwestern Atlantic Ocean

Authors

  • Alonso I. Medina Escuela Superior de Ciencias Marinas, Universidad Nacional del Comahue (UNCo), San Martín 247, San Antonio Oeste, Argentina - Centro de Investigación Aplicada y Transferencia Tecnológica en Recursos Marinos Almirante Storni (CIMAS), Güemes 1030, San Antonio Oeste, Argentina
  • María Alejandra Romero Escuela Superior de Ciencias Marinas, Universidad Nacional del Comahue (UNCo), San Martín 247, San Antonio Oeste, Argentina - Centro de Investigación Aplicada y Transferencia Tecnológica en Recursos Marinos Almirante Storni (CIMAS), Güemes 1030, San Antonio Oeste, Argentina - Laboratorio de Oceanografía Biológica (LOBio), Centro para el Estudio de Sistemas Marinos (CESIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Blvd. Almirante Brown 2915, Puerto Madryn, Argentina
  • Augusto Crespi-Abril Laboratorio de Oceanografía Biológica (LOBio), Centro para el Estudio de Sistemas Marinos (CESIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Blvd. Almirante Brown 2915, Puerto Madryn, Argentina - Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), Blvd. Almirante Brown 3051, Puerto Madryn, Argentina
  • Maite A. Narvarte Escuela Superior de Ciencias Marinas, Universidad Nacional del Comahue (UNCo), San Martín 247, San Antonio Oeste, Argentina - Centro de Investigación Aplicada y Transferencia Tecnológica en Recursos Marinos Almirante Storni (CIMAS), Güemes 1030, San Antonio Oeste, Argentina - Laboratorio de Oceanografía Biológica (LOBio), Centro para el Estudio de Sistemas Marinos (CESIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Blvd. Almirante Brown 2915, Puerto Madryn, Argentina

DOI:

https://doi.org/10.47193/mafis.3312020061803

Keywords:

Marine gasteropod, Shell variation, Geometric morphometry, South Atlantic

Abstract

The volutid gastropod Zidona dufresnei is an important fishery resource from the Southwestern Atlantic Ocean. This species exhibits strong interpopulation differences in life history features, which lead to postulate the existence of two morphotype ('normal' and 'dwarf'). In this study, we combine and compare traditional and geometric morphometrics to capture shell shape variation of Z. dufresnei among three populations from Mar del Plata (37° S) to San Matías Gulf (42° S) to test the hypothesis that the phenotypic variation already described in the life cycle and size is also expressed in the shell shape. Significant differences in the shell morphology among these three populations were detected, mainly associated to the maximum size of individuals and shell shape. The Bahía San Antonio morphotype had shells with higher general roundness and weight compared to San Matías Gulf and Mar del Plata morphotypes, which were not differentiated. Our results support the hypothesis of Lahille (1895) who distinguished the morphotype of Bahía San Antonio ('dwarf' morphotype) as Voluta angulata affinis. The functional significance of the variability found is discussed in terms of the ecological and genetic effects on shape and size.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Adams DC, Rohlf FJ, Slice D. 2004. Geometric Morphometrics: ten years of progress following the revolution. Ital J Zool. 71: 5-16.

Amini-Yekta F, Shokri MR, Maghsoudlou A, Rajabi-Maham H. 2019. Shell morphology of marine gastropod Cerithium caeruleum is influenced by variation in environmental condition across the northern Persian Gulf and the Gulf of Oman. Reg Stud Mar Sci. 25: 100478.

Andrade SCS, Solferini VN. 2006. Transfer experiment suggests environmental effects on the radula of Littoraria flava (Gastropoda: Littorinidae). J Mollus Stud. 72: 111-116.

Atchley WR, Hall BK. 1991. A model for development and evolution of complex morphological structures. Biol Rev. 66: 101-157.

Avaca MS. 2010. Estudios comparativos de las características biológicas y de la estructura demográfica del caracol Buccinanops globulosus en los Golfos Norpatagónicos [PhD thesis]. Bahía Blanca: Universidad Nacional del Sur. 198 p.

Avaca MS, Narvarte MA, Martín P, Van Der Molen S. 2013. Shell shape variation in the Nassariid Buccinanops globulosus in northern Patagonia. Helgol Mar Res. 67: 567-577.

Beu AG. 1998. Superfamily Tonnoidea. Mollusca: the southern synthesis. Fauna of Australia. 5: 792-803.

Bigatti G, Carranza A. 2007. Phenotypic variability associated with the occurrence of imposex in Odontocymbiola magellanica from Golfo Nuevo, Patagonia. J Mar Biol Assoc UK. 87: 755-759.

Bookstein FL. 1991. Morphometric tools for landmark data. Cambridge: Cambridge University Press.

Carvajal-Rodríguez A, Conde-Padín P, Rolán-Alvarez E. 2005. Decomposing shell form into size and shape by geometric morphometric methods in two sympatric ecotypes of Littorina saxatilis. J Mollus Stud. 71: 313-318.

Chapman MG. 2000. Variability of foraging in highshore habitats: dealing with unpredictability. In life at interfaces and under extreme conditions. Dordrecht: Springer.

Chiu YW, Chen HC, Lee SC, Chen CA. 2002. Morphometric Analysis of Shell and Operculum Variations in the Viviparid Snail, Cipangopaludina chinensis (Mollusca: Gastropoda), in Taiwan. Zool Stud. 41: 321-331.

Clench WJ, Turner RD. 1964. The subfamilies Volutinae, Zidoninae, Odontocymbiolinae and Calliotectinae in the western Atlantic. Johnsonia. 4: 129-180.

Conde-Padín P, Caballero A, Rolán-Alvarez E. 2009. Relative role of genetic determination and plastic response during ontogeny for shell-shape traits subjected to diversifying selection. Evolution. 63: 1356-1363.

Conde-Padín P, Grahame JW, Rolán-Alvarez E. 2007. Detecting shape differences in species of the Littorina saxatilis complex by morphometric analysis. J Mollus Stud. 73: 147-154.

Cruz RAL, Pante MJR, Rohlf FJ. 2012. Geometric morphometric analysis of shell shape variation in Conus (Gastropoda: Conidae). Zool J Linn Soc. 165: 296-310.

Dalziel B, Boulding EG. 2005. Water-borne cues from a shell-crushing predator induce a more massive shell in experimental populations of an intertidal snail. J Exp Mar Biol Ecol. 317: 25-35.

Darragh TA, Ponder WF, Beesley PL, Ross JGB, Wells A. 1998. Family Volutidae. Mollusca: the southern synthesis. Fauna of Australia. 5: 833-835.

Doyle S, MacDonald B, Rochette R. 2010. Is water temperature responsible for geographic variation in shell mass of Littorina obtusata (L.) snails in the Gulf of Maine? J Exp Mar Biol Ecol. 394: 98-104.

Epherra L, Crespi-Abril A, Meretta EP, Cledón M, Morsan EM, Rubilar T. 2015. Morphological plasticity in the Aristotle’s lantern of Arbacia dufresnii (Phymosomatoida: Arbaciidae) off the Patagonian coast. Rev Biol Trop. 63: 339-351.

Escofet AM, Orensanz JM, Olivier S, Scarabino V. 1977. Biocenología bentónica del Golfo San Matías (Río Negro, Argentina): metodología, experiencias y resultados del estudio ecológico de un gran espacio geográfico en América Latina. An Inst Cienc Mar Limnol. 5: 59-82.

Fabiano G, Riestra G, Sanana O, Delfino E, Foti R. 2000. Consideraciones sobre la pesquería del caracol fino Zidona dufresnei (Mollusca, Gastropoda) en el Uruguay. Periodo 1996-1998. In: Rey M, editor. Recursos pesqueros no tradicionales: moluscos bentónicos marinos. Montevideo (Uruguay): Proyecto INAPE-PNUD URU/92/003. p. 114-142.

Faul F, Erdfelder E, Buchner A, Lang AG. 2009. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav Res Methods. 41: 1149-1160.

Fedosov A, Watkins M, Heralde III FM, Corneli PS, Concepcion GP, Olivera BM. 2011. Phylogeny of the genus Turris: Correlating molecular data with radular anatomy and shell morphology. Mol Phylogenet Evol. 59: 263-270.

Giménez J, Brey T, Mackensen A, Penchaszadeh PE. 2004. Age, growth, and mortality of the prosobranch Zidona dufresnei (Donovan, 1823) in the Mar del Plata area, south-western Atlantic Ocean. Mar Biol. 145: 707-712.

Giménez J, Lasta M, Bigatti G, Penchaszadeh PE. 2005. Exploitation of the volute snail Zidona dufresnei in Argentine waters, southwestern Atlantic Ocean. J Shellfish Res. 24: 1135-1140.

Giménez J, Penchaszadeh PE. 2002. Reproductive cycle of Zidona dufresnei (Caenogastropoda: Volutidae) from the Southwestern Atlantic Ocean. Mar Biol. 140: 755-761.

Giménez J, Penchaszadeh PE. 2003. Size at first sexual maturity in Zidona dufresnei (Caenogastropoda: Volutidae) of the south-western Atlantic Ocean (Mar del Plata, Argentina). J Mar Biol Assoc UK. 83: 293-296.

Grenier S, Barre P, Litrico I. 2016. Phenotypic plasticity and selection: nonexclusive mechanisms of adaptation. Scientifica. 7021701.

Guerra-Varela J, Colson I, Backeljau T, Breugelmans K, Hughes RN, Rolán-Alvarez E. 2009. The evolutionary mechanism maintaining shell shape molecular differentiation between two ecotypes of the dogwhelk Nucella lapillus. Evol Ecol. 23: 261-280.

Guerrero RA, Lasta CA, Acha EM, Mianzan HW, Framiñan MB. 1997. Atlas Hidrográfico del Río de la Plata. Buenos Aires: Comisión Administradora del Río de la Plata CARP; Mar del Plata: Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP). 109 p.

Hallers-Tjabbes CCT. 1979. The shell of the whelk, Buccinum undatum L. shape analysis and sex discrimination. Netherlands: Groningen University.

Hanken J, Wake MH. 1991. Introduction to the symposium: experimental approaches to the analysis of form and function. Am Zool. 31: 603-604.

Hollander J, Adams DC, Johannesson K. 2006. Evolution of adaptation through allometric shifts in a marine snail. Evolution. 60: 2490-2497.

Kaiser P. 1977. Beitrage zur Kenntis der Voluten (Mollusca) in argentinisch-brasianischen Gewassern (mit der Beschreibungzweir neuer Arten) Mitt. Hamburg Zool Mus Inst Brad. 74: 11-26.

Klingenberg CP. 2011. MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Res. 11: 353-357.

Lahille F. 1895. Contribución al estudio de las volutas argentinas: Morfología externa. Rev Zool Mus La Plata. 6: 293-325.

Lombard RE. 1991. Experiment and comprehending the evolution of function. Am Zool. 31: 743-756.

Marchinko KB. 2003. Dramatic phenotypic plasticity in barnacle legs (Balanus glandula Darwin): magnitude, age dependence, and speed of response. Evolution. 57: 1281-1290.

Marko PB. 2005. An intraespecific comparative analysis of character divergence between sympatric species. Evolution. 59: 554-564.

Mazio CA, Vara CD. 1983. Las mareas del Golfo San Matías. Buenos Aires: Servicio de Hidrografía Naval. Armada Argentina. Inf Nº 13. 32 p.

Medina AI, Romero MA, Bidau CJ, Narvarte MA. 2015. Demographic analysis among three populations of Zidona dufresnei from the southwestern Atlantic. Lat Am J Aquat Res. 43: 446-456.

Medina AI, Romero MA, Narvarte MA. 2016. Radular morphology of Zidona dufresnei (Neogastropoda: Volutidae) and an analysis of its variability along the distributional range. Mar Biol Res. 12: 211-220.

Millien V, Lyons SK, Olson L, Smith FA, Wilson AB, Yom-Tov Y. 2006. Ecotypic variation in the context of global climate change: Revisiting the rules. Ecol Lett. 9: 853-869.

Müller GB. 1991. Experimental strategies in evolutionary embryology. Am Zool. 31: 605-615.

Penchaszadeh PE, De Mahieu GG. 1976. Reproducción de gasteropodos prosobranquios del Atlántico Sudoccidental. Volutidae. Physis A. 35 (91): 145-153.

Penchaszadeh PE, Miloslavich P, Lasta M, Costa PMS. 1999. Egg capsules in the genus Adelomelon (Caenogastropoda: Volutidae) from the Atlantic coast of South America. The Nautilus. 113: 56-63.

Pereyra P, Narvarte M, Martín PR. 2009. Notes on oviposition and demography of a shallow water population of the edible snail Zidona dufresnei (Caenogastropoda: Volutidae) living in San Antonio Bay (northern Patagonia, Argentina). J Mar Biol Assoc UK. 86: 1209-1214.

Piola AR, Scasso LN. 1988. Circulación en el Golfo San Matías. Geoacta. 15: 33-51.

Raffaelli D, Hawkins S. 1999. Intertidal Ecology. Dordrecht: Kluwer Academic Publishers.

Reed TE, Schindler DE, Waples RS. 2011. Interacting effects of phenotypic plasticity and evolution on population persistence in a changing climate. Conservat Biol. 25: 56-63.

Roche A, Maggioni M, Narvarte M. 2011. Predation on egg capsules of Zidona dufresnei (Volutidae): ecological implications. Mar Biol. 158: 2787-2793.

Roche A, Maggioni M, Rumi A, Narvarte M. 2013. Duration of intracapsular development of Zidona dufresnei (Gastropoda: Volutidae) at its southern distributional limit. Am Malacol Bull. 31: 85-89.

Rohlf FJ. 1990. Morphometrics. Annu Rev Ecol Syst. 21: 299-316.

Rohlf FJ. 2001. TPSDig 1.47, TPSUtil 1.37 and TPSRelw 1.44 Software. Stony Brook: State University of New York.

Rosenberg G. 2009. Malacolog 4.1.1: A Database of Western Atlantic Marine Mollusca. [www database (version 4.1.1)]. http://www.malacolog.org/.

Rufino MM, Gaspar MB, Pereira AM, Vasconcelos P. 2006. Use of shape to distinguish Chamelea gallina and Chamelea striatula (Bivalvia: Veneridae): linear and geometric morphometric methods. J Morphol. 267: 1433-1440.

Scarabino V. 1977. Moluscos del Golfo San Matías (Provincia de Río Negro, República Argentina). Inventario y claves para su identificación. Comunicaciones de la sociedad malacológica del Uruguay. 4: 177-297.

Teso V, Signorelli JH, Pastorino G. 2011. Shell phenotypic variation in the south-western Atlantic gastropod Olivancillaria carcellesi (Mollusca: Olividae). J Mar Biol Assoc UK. 91: 1089-1094.

Trussell GC. 1996. Phenotypic plasticity in an intertidal snail: the role of a common crab predator. Evolution. 50: 448-454.

Trussell GC. 2000. Phenotypic clines, plasticity, and morphological trade‐offs in an intertidal snail. Evolution. 54: 151-166.

Valentin A, Sévigny JM, Chanut JP. 2002. Geometric morphometrics reveals body shape differences between sympatric redfish Sebastes mentella, Sebastes fasciatus and their hybrids in the Gulf of St Lawrence. J Fish Biol. 60: 857-875.

Valladares A, Manríquez G, Suárez-Isla BA. 2010. Shell shape variation in populations of Mytilus chilensis (Hupe 1854) from southern Chile: a geometric morphometric approach. Mar Biol. 157: 2731-2738.

Vaux F, Crampton JS, Marshall BA, Trewick SA, Morgan-Richards M. 2017. Geometric morphometric analysis reveals that the shells of male and female siphon whelks Penion chathamensis are the same size and shape. Molluscan Res. 37: 194-201.

Vergara D, Fuentes JA, Stoy KS, Lively CM. 2016. Evaluating shell variation across different populations of a freshwater snail. J Mollusc Res. 37: 120-132.

Williams G, Sapoznik M, Ocampo Reinaldo M, Solis M, Narvarte M, González R, Esteves JL, Gagliardini D. 2010. TM/ETM, AVHRR and SeaWiFS sensor studies in San Matías Gulf (Patagonia, Argentina): relationship with fishing activity and oceanographic surveys data. Int J Rem Sens. 31: 4531-4542.

Zelditch ML, Fink WL, Swiderski DL, Lundrigan BL. 1998. On applications of geometric morphometrics to studies of ontogeny and phylogeny: a reply to Rohlf. Syst Biol. 47: 159-167.

Zelditch ML, Swiderski DL, Sheets HD, Fink WL. 2004. Geometric morphometrics for biologists: a primer. Boston: Elsevier Academic Press.

Downloads

Published

2020-06-15

How to Cite

Medina, A. I., Romero, M. A. ., Crespi-Abril, A. and Narvarte, M. A. (2020) “Morphological shell variation of Zidona dufresnei (Caenogastropoda: Volutidae) from the Southwestern Atlantic Ocean”, Marine and Fishery Sciences (MAFIS), 33(1), pp. 53–68. doi: 10.47193/mafis.3312020061803.