Trophic position and feeding sources of Engraulis anchoita larvae from the Buenos Aires stock, southwestern Atlantic Ocean

Authors

  • Marina Do Souto Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo Nº 1, B7602HSA - Mar del Plata, Argentina - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina https://orcid.org/0000-0002-2259-0115
  • Fabiana Capitanio Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina - Departamento de Biodiversidad y Biología experimental, Instituto de Biodiversidad y Biología Experimental Aplicada (IBBEA), Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Argentina https://orcid.org/0000-0002-7497-1630
  • David E. Galván Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina - Centro para el Estudio de Sistemas Marinos (CESIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Boulevard Brown 2915, U9120ACD - Puerto Madryn, Argentina https://orcid.org/0000-0001-8132-6069
  • Gustavo J. Macchi Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo Nº 1, B7602HSA - Mar del Plata, Argentina - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina - Instituto de Investigaciones Marinas y Costeras (IIMyC-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina https://orcid.org/0000-0003-1821-5491
  • Marina V. Diaz Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo Nro1, Mar del Plata, Buenos Aires B7602HSA, Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Buenos Aires, Argentina https://orcid.org/0000-0002-2912-5232

DOI:

https://doi.org/10.47193/mafis.3822025010114

Keywords:

Argentine anchovy, ichthyoplankton, stable isotopes, food web

Abstract

The existing literature has classified Engraulis anchoita larvae as exclusively zooplanktophagous, with copepod eggs and nauplii larvae as their main prey. However, there is evidence that other plankton components that have not been identified by intestinal content analysis may be a part of their diet. The objective of this work was to explore trophic positions and main food sources of E. anchoita larvae by analyzing stable nitrogen and carbon isotopes (δ15N and δ13C) with respect to other plankton components (particulate organic material, calanoid copepods, and chaetognaths) at a fixed sampling station close to the coast of the Province of Buenos Aires, Argentina, southwest Atlantic. Samples were collected at different times of the year between the end of 2016 and the beginning of 2018. By averaging δ15N and δ13C values of all surveys, it was found that the anchovy larvae in their three development stages coincided with the same trophic position as chaetognaths, suggesting that their diets overlap. When surveys carried out in autumn were analyzed separately, trophic levels of anchovy larvae differed in a staggered manner among their stages, being situated between the positions of copepods and chaetognaths. Compared to other stages of development, anchovy larvae in the preflexion stage consumed a higher proportion of particulate organic material rather than small copepods. These findings suggest that anchovy larvae may consume a variety of food items and shift their trophic position in response to environmental conditions.

Downloads

Download data is not yet available.

References

Alheit J, Ciechomski JD, Djurfeldt L, Ebel C, Ehrlich MD, Elgue JC, Viñas MD. 1991. SARP Studies on Southwest Atlantic anchovy, Engraulis anchoita, off Argentina, Uruguay and Brazil. ICES Biol Oceanogr Comm. 46: 1-66.

Angelescu V. 1982. Ecología trófica de la anchoíta del Mar Argentino (Engraulidae, Engraulis anchoita). Parte II. Alimentación, comportamiento y relaciones tróficas en el ecosistema. Contrib Inst Nac Invest Desarr Pesq (Mar del Plata). Nº 409. 83 p.

Arrington DA, Winemiller KO. 2002. Preservation effects on stable isotope analysis of fish muscle. T Am Fish Soc. 131: 337-342.

Bakun A. 2006. Wasp-waist populations and marine ecosystem dynamics: navigating the “predator pit” topographies. Prog Oceanogr. 68: 271-288.

Buratti C, Díaz de Astarloa J, Hüne M, Irigoyen A, Landaeta M, Riestra C, Vieira JP, Di Dario F. 2020. Engraulis anchoita. The IUCN red List of Threatened Species. e.T195023A159405500.

Cabana G, Rasmussen JB. 1996. Comparison of aquatic food chains using nitrogen isotopes. Proc Natl Acad Sci. 93: 10844-10847.

Catalán IA, Folkvord A, Palomera I, Quílez-Badía G, Kallianoti F, Tselepides A, Kallianotis A. 2010. Growth and feeding patterns of European anchovy (Engraulis encrasicolus) early life stages in the Aegean Sea (NE Mediterranean). Estuar Coast Shelf Sci. 86: 299-312.

Ciancio JE, Bartes S, Fernández, S, Harillo C, Lancelotti J. 2020. Energy Density Predictors for Argentine Anchovy Engraulis anchoita, a Key Species of the Southwestern Atlantic Ocean. Trans Am Fish Soc. 149: 204-212.

Ciechomski JD. 1966. Development of the larvae and variations in the size of the eggs of the Argentine anchovy, Engraulis anchoita (Hubbs and Marini). ICES J Mar Sci. 30: 281-290.

Ciechomski JD, Weiss G. 1974. Estudios sobre la alimentación de larvas de la merluza, Merluccius hubbsi y de la anchoíta, Engraulis anchoita en el mar. Physis. 33: 199-208.

Daponte MC, Capitanio FL, Nahabedian DE, Viñas MD, Negri RM. 2004. Sagitta friderici Ritter-Záhony (Chaetognatha) from South Atlantic waters: abundance, population structure, and life cycle. ICES J Mar Sci. 61: 680-686.

DeNiro MJ, Epstein S. 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim AC. 45: 341-351

Dias JF, Petti MAV, Corbisier TN. 2016. Trophic position and nutritional condition of the anchovy Engraulis anchoita larvae in the Cabo Frio Region, Brazil. Vie Milieu. 66: 275-285.

Diaz MV, Do Souto M, Peralta M, Pájaro M, Spinelli M, Saraceno M, Balestrini C, Capitanio F. 2016. Comer o ser comido: factores que determinan la condición nutricional de larvas de Engraulis anchoita de la población patagónica de la especie. Ecol Austral. 26: 120-133.

Dickmann M, Möllmann C, Voss R. 2007. Feeding ecology of Central Baltic sprat Sprattus sprattus larvae in relation to zooplankton dynamics: implications for survival. Mar Ecol Prog Ser. 342: 277–289.

Do Souto M, Brown DR, Leonarduzzi E, Capitanio F, Diaz MV. 2019b. Nutritional condition and otolith growth of Engraulis anchoita larvae: the comparison of two life traits indexes. J Mar Syst. 193: 94-102.

Do Souto M, Brown DR, Leonarduzzi E, Silva RI, Martínez A, Cepeda G, Macchi G, Galván DE, Diaz MV. 2025. Comfort in stratification and trophic flexibility: Argentine anchovy, Engraulis anchoita, larvae life traits in relation to their food sources. Fish Res. 281: 107215.

Do Souto M, Brown DR, Segura V, Negri R, Temperoni B, Cepeda G, Viñas MD, Capitanio F, Diaz MV. 2019a. Putting the pieces together: recent growth, nutritional condition and mortality of Engraulis anchoita larvae in the Southwest Atlantic. Fish Oceanogr. 28: 597-611.

Doi H, Kikuchi E, Takagi S, Shikano S. 2007. Changes in carbon and nitrogen stable isotopes of chironomid larvae during growth, starvation and metamorphosis. Rapid Commun Mas. 21: 997-1002.

Edwards M, Richardson A. 2004. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature. 430: 881-883.

El-Sabaawi R, Dower JF, Kainz M, Mazumder A. 2009. Characterizing dietary variability and trophic positions of coastal calanoid copepods: insight from stable isotopes and fatty acids. Mar Biol. 156: 225-237.

Focken U. 2001. Stable isotopes in animal ecology: the effect of ration size on the trophic shift of C and N isotopes between feed and carcass. Isot Environ Healt S. 37 (3): 199-211.

France RL. 1995. Differentiation between littoral and pelagic food webs in lakes using stable carbon isotopes. Limnol Oceanogr. 40: 1310-1313.

Fry B, Sherr EB. 1984. 13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Cont Mar Sci. 27: 13-47.

Funes M, Irigoyen AJ, Trobbiani GA., Galván DE. 2018. Stable isotopes reveal different dependencies on benthic and pelagic pathways between Munida gregaria ecotypes. Food Webs. 17: e00101.

Galván DE, Sweeting CJ, Polunin NVC. 2012. Methodological uncertainty in resource mixing models for generalist fishes. Oecologia. 169 (4): 1083-1093.

Gannes LZ, O’Brien DM, Martinez del Rio C. 1997. Stable isotopes in animal ecology: assumptions, caveats, and a call for more laboratory experiments. Ecology. 78: 1271-1276.

Hansen JE, Martos P, Madirolas A. 2001. Relationship between spatial distribution of the Patagonian stock of Argentine anchovy, Engraulis anchoita, and sea temperatures during late spring to early summer. Fish Oceanogr. 10: 193-206.

Hynes HBN. 1950. The food of fresh-water sticklebacks (Gasterosteus aculeatus and Pygosteus pungitius), with a review of methods used in studies of the food of fishes. J Anim Ecol. 19 (1): 36-58.

Hyslop EJ. 1980. Stomach contents analysis-a review of methods and their application. J Fish Biol. 17: 411-429.

Kling GW, Fry B, O’Brien WJ. 1992. Stable isotopes and planktonic trophic structure in arctic lakes. Ecology. 73: 561-566.

Last JM. 1978. The food of three species of gadoid larvae in the eastern English Channel and southern North Sea Mar Biol. 48: 377-386.

Leonarduzzi E, Brown DR, Sánchez R. 2010. Seasonal variations in the growth of anchovy larvae (Engraulis anchoita) on the Argentine coastal shelf. Sci Mar. 74: 267-274.

Leonarduzzi E, Do Souto M, Diaz MV. 2021. Early stages of anchovy: abundance, variability and larval condition at the fixed coastal station EPEA between 2000-2017. Mar Fish Sci. 34: 123-142.

Levine S. 1980. Several measures of trophic structure applicable to complex food webs. J Theor Biol. 83: 195-207.

Lutz VA, Subramaniam A, Negri RM, Silva RI, Carreto JI. 2006. Annual variations in bio-optical properties at the ‘Estación Permanente de Estudios Ambientales (EPEA)’ coastal station, Argentina. Cont Shelf Res. 26: 1093-1112.

Malzahn AM, Boersma M. 2009. Trophic flexibility in larvae of two fish species (lesser sandeel, Ammodytes marinus and dab, Limanda limanda). Sci Mar. 73: 131-139.

Minagawa M, Wada E. 1984. Stepwise enrichment of 15N along food chains: further evidence and the relation between 15N and animal age. Geochim Cosmochim AC. 48: 1135-1140.

Oelbermann K, Scheu S. 2002. Stable isotope enrichment (15 N and 13 C) in a generalist predator (Pardosa lugubris, Araneae: Lycosidae): effects of prey quality. Oecologia. 130: 337-344.

Orlando P, Buratti C, Garciarena AD. 2019. Diagnóstico de la población de anchoíta bonaerense (Engraulis anchoita) y estimación de captura biológicamente aceptable durante el año 2019. Inf Téc INIDEP Nº 24/2019. 29 p.

Pepin P, Dower JF. 2007. Variability in the trophic position of larval fish in a coastal pelagic ecosystem based on stable isotope analysis. J Plankton Res. 29: 727-737.

Pepin P, Penney R. 2000. Feeding by a larval fish community: impact on zooplankton. Mar Ecol Prog Ser. 204: 199-212.

Peterson BJ, Fry B. 1987. Stable isotopes in ecosystem studies. Annu Rev Ecol Evol Syst. 18: 293-320.

Petursdottir H, Gislason A, Falk-Petersen S, Hop H, Svavarsson J. 2008. Trophic interactions of the pelagic ecosystem over the Reykjanes Ridge as evaluated by fatty acid and stable isotope analyses. Deep-Sea Res Pt II. 55: 83-93.

Post DM. 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology. 83: 703-718.

R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

Sabatini M. 2004. Environmental features, reproduction and feeding of hake (Merluccius hubbsi) and anchovy (Engraulis anchoita) in the Patagonian spawning ground. Synthesis and perspectives. Rev Invest Desarr Pesq. 16: 5-25.

Sato NE, Hernández D, Viñas MD. 2011a. Hábitos alimentarios de las larvas de Engraulis anchoita (Hubbs y Marini, 1935) en las aguas costeras de la Provincia de Buenos Aires, Argentina. Lat Am J Aquat Res. 39: 16-24.

Sato NE, Hernández D, Viñas MD. 2011b. Hábitos alimentarios de Sagitta friderici Ritter-Zahony en las aguas costeras de la Provincia de Buenos Aires, Argentina. Bol Invest Mar Cost. 40: 59-74.

Schmidt K, Atkinson A, Stübing D, McClelland JW, Montoya JP, Voss M. 2003. Trophic relationships among Southern Ocean copepods and krill: some uses and limitations of a stable isotope approach. Limnol Oceanogr. 48: 277-289.

Sharp Z. 2017. Principles of stable isotope geochemistry. 2nd edition. Prentice Hall.

Smith JA, Mazumder D, Suthers IM, Taylor MD. 2013. To fit or not to fit: evaluating stable isotope mixing models using simulated mixing polygons. Methods Ecol Evol. 4 (7): 612-618.

Søreide JE, Tamelander T, Hop H, Hobson KA, Johansen I. 2006. Sample preparation effects on stable C and N isotope values: a comparison of methods in Arctic marine food web studies. Mar Ecol Prog Ser. 328: 17-28.

Spinelli ML, Pájaro M, Martos P, Esnal GB, Sabatini M, Capitanio FL. 2012. Potential zooplankton preys (Copepoda and Appendicularia) for Engraulis anchoita in relation to early larval and spawning distributions in the Patagonian frontal system (SW Atlantic Ocean). Sci Mar. 76: 39-47.

Stock BC, Jackson AL, Ward EJ, Parnell AC, Phillips DL, Semmens BX. 2018. Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ. 6: e5096.

Syväranta J, Vesala S, Rask M, Ruuhijärvi J, Jones RI. 2008. Evaluating the utility of stable isotope analyses of archived freshwater sample materials. Hydrobiologia. 600: 121-130.

Tamelander T, Reigstad M, Hop H, Carroll ML, Wassmann P. 2008. Pelagic and sympagic contribution of organic matter to zooplankton and vertical export in the Barents Sea marginal ice zone. Deep-Sea Res Pt II. 55: 2330-2339.

Tamelander T, Søreide JE, Hop H, Carroll ML. 2006. Fractionation of stable isotopes in the Arctic marine copepod Calanus glacialis: effects on the isotopic composition of marine particulate organic matter. J Exp Mar Biol Ecol. 333: 231-240.

Tanaka H, Yoneda M, Kitano H, Kawamura K, Imanaga Y, Matsuyama M, Okamura K, Ohshimo S. 2016. Stable isotope evidence for income resource allocation to egg production in the Japanese anchovy Engraulis japonicus. Mar Biol. 163: 1-28.

Uriarte A, García A, Ortega A, de la Gándara F, Quintanilla J, Laiz-Carrión R. 2016. Isotopic discrimination factors and nitrogen turnover rates in reared Atlantic bluefin tuna larvae (Thunnus thynnus): effects of maternal transmission. Sci Mar. 80: 447-456.

Vander Zanden MJ, Casselman JM, Rasmussen JB. 1999. Stable isotope evidence for the food web consequences of species invasions in lakes. Nature. 401: 464-467.

Vander Zanden MJ, Rasmussen JB. 2001. Variation in 15N and 13C trophic fractionation: implications for aquatic food web studies. Limnol Oceanogr. 46: 2061-2066.

Viñas MD, Cepeda GD, Luz Clara M. 2021. Linking long-term changes of zooplankton community to environmental variability at the EPEA station (Southwestern Atlantic Ocean). Mar Fish Sci. 34: 211-234.

Viñas MD, Negri RM, Cepeda GD, Hernández D, Silva R, Daponte MC, Capitanio FL. 2013. Seasonal succession of zooplankton in coastal waters of the Argentine Sea (Southwest Atlantic Ocean): prevalence of classical or microbial food webs. Mar Biol Res. 9: 371-382.

Viñas MD, Ramírez FC. 1996. Gut analysis of first-feeding anchovy larvae from Patagonian spawning area in relation to food availability. Arch Fish Mar Res. 43: 231-256.

Webb SC, Hedges RCM, Simpson SJ. 1998. Diet quality influences the delta-13-C and delta-15-N of locusts and their biochemical components. J Exp Biol. 201: 2903-2911.

Downloads

Published

2025-03-07

How to Cite

Do Souto, M., Capitanio, F., Galván, D. E., Macchi, G. J., & Diaz, M. V. (2025). Trophic position and feeding sources of Engraulis anchoita larvae from the Buenos Aires stock, southwestern Atlantic Ocean. Marine and Fishery Sciences (MAFIS), 38(2). https://doi.org/10.47193/mafis.3822025010114

Similar Articles

1-10 of 22

You may also start an advanced similarity search for this article.