From waste to value: protein hydrolysates from byproducts of the Argentine hake (Merluccius hubbsi) processing using endogenous enzymes and Alcalase® 2.4L

Authors

  • Clara Liebana Instituto de Investigaciones Marinas y Costeras (IIMyC-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CC 1260, Mar del Plata, Argentina
  • Nair de los Ángeles Pereira Instituto de Investigaciones Marinas y Costeras (IIMyC-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CC 1260, Mar del Plata, Argentina
  • Analia Fernández-Gimenez Instituto de Investigaciones Marinas y Costeras (IIMyC-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CC 1260, Mar del Plata, Argentina
  • Maria Florencia Fangio Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, B7602AYL - Mar del Plata, Argentina - Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Funes 3350, B7602AYL - Mar del Plata, Argentina https://orcid.org/0000-0001-5860-6513

DOI:

https://doi.org/10.47193/mafis.3822025010106

Keywords:

Waste management, fish protein hydrolysate, peptidase activity, hydrolysis degree, antioxidant property

Abstract

The valorization of fishery byproducts is essential to reduce waste and create high-value products. Waste from Argentine hake (Merluccius hubbsi) could enhance its functional and antioxidant properties through hydrolysis, releasing peptides with bioactive properties. Protein hydrolysates of Argentine hake were produced through autolysis (Aut) and enzymatic hydrolysis using Alcalase® 2.4L at concentrations of 0.24% and 2% (v/v) (Alc-0.24 and Alc-2), respectively, over 150 min. Alkaline peptidase activity, degree of hydrolysis, and antioxidant activity were assessed using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical ABTS·+ scavenging assays. All hydrolysates retained alkaline peptidase activity throughout the process. Alcalase-treated hydrolysates exhibited significantly higher peptidase activity and hydrolysis degree compared to autolysis. At 60 min, Alc-0.24 reached peptidase activity levels similar to Alc-2, and by 30 min, both had comparable degrees of hydrolysis. ABTS·+ scavenging activity increased over time for Alc-0.24, with both Alcalase® 2.4L concentrations outperforming autolysis. No significant differences were found between Alc-0.24 and Alc-2. Although all hydrolysates showed DPPH scavenging activity, no significant differences were detected between treatments or reaction times. These findings highlight the potential for producing value-added protein hydrolysates from Argentine hake waste.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Clara Liebana, Instituto de Investigaciones Marinas y Costeras (IIMyC-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CC 1260, Mar del Plata, Argentina

Nair de los Ángeles Pereira, Instituto de Investigaciones Marinas y Costeras (IIMyC-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CC 1260, Mar del Plata, Argentina

Analia Fernández-Gimenez, Instituto de Investigaciones Marinas y Costeras (IIMyC-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CC 1260, Mar del Plata, Argentina

References

Ananey-Obiri D, Matthews LG, Tahergorabi R. 2019. Proteins from fish processing by-products. In: Galanakis CM, editor. Proteins: sustainable source, processing and applications. Academic Press. p. 163-191. DOI: https://doi.org/10.1016/B978-0-12-816695-6.00006-4 DOI: https://doi.org/10.1016/B978-0-12-816695-6.00006-4

Asaduzzaman AKM, Hasan I, Rahman MH, Tareq ARM. 2020. Antioxidant and antiproliferative activity of phytoconstituents identified from Sargassum binderi seaweed extracts cultivated in Bangladesh. Int J Biosci. 16 (3): 481-494.

Baek HH, Cadwallader KR. 1996. Volatile compounds in flavor concentrates produced from crayfish-processing byproducts with and without protease treatment. J Agric Food Chem. 44 (10): 3262-3267. DOI: http://doi.org/10.1021/jf960023q DOI: https://doi.org/10.1021/jf960023q

Chalamaiah M, Jyothirmayi T, Diwan PV, Dinesh Kumar B. 2015. Antioxidant activity and functional properties of enzymatic protein hydrolysates from common carp (Cyprinus carpio) roe (egg). J Food Sci Technol. 52: 5817-5825. DOI: https://doi.org/10.1007/s13197-015-1714-6 DOI: https://doi.org/10.1007/s13197-015-1714-6

Cheung IWY, Cheung LKY, Tan NY, Li-Chan ECY. 2012. The role of molecular size in antioxidant activity of peptide fractions from Pacific hake (Merluccius productus) hydrolysates. Food Chem. 134 (3): 1297-1306. DOI: https://doi.org/10.1016/j.foodchem.2012.02.215 DOI: https://doi.org/10.1016/j.foodchem.2012.02.215

Fernández Herrero A, Vittone M, Salomone A. 2015. Biological silage of Merluccius hubbsi. Amino acid composition, degree of hydrolysis, and peptide size. Issues Biol Sci Pharm Res. 3 (6): 57-62.

Friedman IS, Behrens LA, Pereira NDLA, Contreras EM, Fernández-Gimenez AV. 2022. Digestive proteinases from the marine fish processing wastes of the South-West Atlantic Ocean: their partial characterization and comparison. J Fish Biol. 100 (1): 150-160. DOI: https://doi.org/10.1111/jfb.14929 DOI: https://doi.org/10.1111/jfb.14929

Friedman IS, Contreras EM, Fernández-Gime-nez AV. 2024. Catalytic stability of aspartic proteinases recovered from viscera of Merluccius hubbsi, Percophis brasiliensis, Urophicis brasiliensis, and Cynoscion guatucupa. Waste Biomass Valor. DOI: https://doi.org/10.1007/s12649-024-02717-8 DOI: https://doi.org/10.1007/s12649-024-02717-8

Gao R, Yu Q, Shen Y, Chu Q, Chen G, Fen S, Yang M, Yuan L, McClements DJ, Sun Q. 2021. Production, bioactive properties, and potential applications of fish protein hydrolysates: developments and challenges. Trends Food Sci Technol. 110: 687-699. DOI: https://doi.org/10.1016/j.tifs.2021.02.031 DOI: https://doi.org/10.1016/j.tifs.2021.02.031

García-Carreño FL. 1992. The digestive proteases of langostilla (Pleuroncodes planipes, decapoda): their partial characterization, and the effect of feed on their composition. Comp Biochem Physiol B Comp Biochem. 103: 575-578. DOI: https://doi.org/10.1016/0305-0491(92)90373-Y DOI: https://doi.org/10.1016/0305-0491(92)90373-Y

Gómez LJ, Gómez NA, Zapata JE, López-García G, Cilla A, Alegría A. 2020. Optimization of the red tilapia (Oreochromis spp.) viscera hydrolysis for obtaining iron-binding peptides and evaluation of in vitro iron bioavailability. Foods. 9: 883. DOI: https://doi.org/10.3390/foods9070883 DOI: https://doi.org/10.3390/foods9070883

Góngora HG, Ledesma P, Valvo VRL, Ruiz AE, Breccia JY. 2012. Screening of lactic acid bacteria for fermentation of minced wastes of Argentinean hake (Merluccius hubbsi). Food Bioprod Process. 90 (4): 767-772. DOI: https://doi.org/10.1016/j.fbp.2012.04.002

Henriques A, Vázquez JA, Valcarcel J, Mendes R, Bandarra NM, Pires C. 2021. Characterization of protein hydrolysates from fish discards and by-products from the North-West Spain fishing fleet as potential sources of bioactive peptides. Mar Drugs. 19: 338. DOI: https://doi.org/10.3390/md19060338 DOI: https://doi.org/10.3390/md19060338

Idowu AT, Benjakul S. 2019. Bitterness of fish protein hydrolysate and its debittering prospects. J Food Biochem. 43 (9): e12978. DOI: https://doi.org/10.1111/jfbc.12978 DOI: https://doi.org/10.1111/jfbc.12978

Karoud W, Ghlissi Z, Krichen F, Kallel R, Bougatef H, Zarai Z, Boudawara T, Sahnoun Z, Sila A, Bougatef A. 2020. Oil from hake (Merluccius merluccius): characterization, antioxidant activity, wound healing and anti-inflammatory effects. J Tissue Viability. 29 (2): 138-147. DOI: https://doi.org/10.1016/j.jtv.2020.01.002 DOI: https://doi.org/10.1016/j.jtv.2020.01.002

Karoud W, Sila A, Krichen F, Martinez-Alvarez O, Bougatef A. 2019. Characterization, surface properties and biological activities of protein hydrolysates obtained from hake (Merluccius merluccius) heads. Waste Biomass Valor. 10: 287-297. DOI: https://doi.org/10.1007/s12649-017-0069-9 DOI: https://doi.org/10.1007/s12649-017-0069-9

Klompong V, Benjakul S, Kantachote D, Shahidi F. 2007. Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the DH and enzyme type. Food Chem. 102: 1317-1327. DOI: https://doi.org/10.1016/j.foodchem.2006.07.016 DOI: https://doi.org/10.1016/j.foodchem.2006.07.016

Lamas DL, Yeannes MI, Massa AE 2015. Partial purification of proteolytic enzymes and characterization of trypsin from Merluccius hubbsi by-products. Internat J Food Nutrit. Sci. 4 (5): 2-11.

Latorres JM, Rios DG, Saggiomo G, Wasielesky W, Prentice-Hernandez C. 2018. Functional and antioxidant properties of protein hydrolysates obtained from white shrimp (Litopenaeus vannamei). J Food Sci Technol. 55: 721-729. DOI: https://doi.org/10.1007/s13197-017-2983-z DOI: https://doi.org/10.1007/s13197-017-2983-z

[MAGyP] Secretaría de Agricultura, Ganadería y Pesca. 2024. Desembarques de capturas marítimas totales. [accessed 2024 Sep 17]. https://www.magyp.gob.ar/sitio/areas/pesca_maritima/desembarques/lectura.php?imp=1&tabla=especie_mes_2018.

Martone CB, Borla OP, Sánchez JJ. 2005. Fishery by-product as a nutrient source for bacteria and archaea growth media. Bioresour Technol. 96 (3): 383-387. DOI: https://doi.org/10.1016/j.biortech.2004.04.008

Mazorra-Manzano MA, Pacheco-Aguilar R, Ramirez-Suarez JC, García-Sánchez G. 2008. Pacific whiting (Merluccius productus) underutilization in the Gulf of California: muscle autolytic activity characterization. Food Chem. 107 (1): 106-111. DOI: https://doi.org/10.1016/j.foodchem.2007.07.056 DOI: https://doi.org/10.1016/j.foodchem.2007.07.056

Mazorra-Manzano MA, Pacheco-Aguilar R, Ramírez-Suárez JC, Garcia-Sanchez G, Lugo-Sánchez ME. 2012. Endogenous proteases in Pacific whiting (Merluccius productus) muscle as a processing aid in functional fish protein hydrolysate production. Food Bioproc Technol. 5: 130-137. DOI: https://doi.org/10.1007/s11947-010-0374-9 DOI: https://doi.org/10.1007/s11947-010-0374-9

Moya-Moreira TF, Gonçalves OH, Leimann FV, Ribeiro RP. 2023. Fish protein hydrolysates: bioactive properties, encapsulation and new technologies for enhancing peptides bioavailability. Curr Pharm Des. 29 (11): 824-836. DOI: https://doi.org/10.2174/1381612829666230110141811 DOI: https://doi.org/10.2174/1381612829666230110141811

Nirmal NP, Santivarangkna C, Rajput MS, Benjakul S, Maqsood S. 2022. Valorization of fish byproducts: sources to end-product applications of bioactive protein hydrolysate. Compr Rev Food Sci Food Saf. 21 (2): 1803-1842. DOI: https://doi.org/10.1111/1541-4337.12917 DOI: https://doi.org/10.1111/1541-4337.12917

Nikoo M, Bejakul M, Benjakul S, Ahmadi Gablighi H. 2022. Protein hydrolysates derived from aquaculture and marine byproducts through autolytic hydrolysis. Compr Rev Food Sci Food Saf. 21 (6): 4872-4899. DOI: https://doi.org/10.1111/1541-4337.13060

Nikoo M, Regenstein JM, Noori F, Gheshlaghi SP. 2021. Autolysis of rainbow trout (Oncorhynchus mykiss) by-products: enzymatic activities, lipid and protein oxidation, and antioxidant activity of protein hydrolysates. LWT Food Sci Techol. 140: 110702. DOI: https://doi.org/10.1016/j.lwt.2020.110702

Ognjanović BI, Đorđević NZ, Perendija BR, Despotović SG, Žikić RV, Štajn AŠ, Saičić ZS. 2008. Concentration of antioxidant compounds and lipid peroxidation in the liver and white muscle of hake (Merluccius merluccius L.) in the Adriatic Sea. Arch Biol Sci. 60 (4): 601-607. DOI: https://doi.org/10.2298/ABS0804601O DOI: https://doi.org/10.2298/ABS0804601O

Ovissipour M, Rasco B, Shiroodi SG, Modanlow M, Gholami S, Nemati M. 2013. Antioxidant activity of protein hydrolysates from whole anchovy sprat (Clupeonella engrauliformis) prepared using endogenous enzymes and commercial proteases. J Sci Food Agric. 93 (7): 1718-1726. DOI: https://doi.org/10.1002/jsfa.5957 DOI: https://doi.org/10.1002/jsfa.5957

Ovissipour M, Safari R, Motamedzadegan A, Shabanpour B. 2009. Chemical and biochemical hydrolysis of Persian sturgeon (Acipenser persicus) visceral protein. Food Bioprocess Technol. 5: 460-465. DOI: https://doi.org/10.1007/s11947-009-0284-x DOI: https://doi.org/10.1007/s11947-009-0284-x

Pacheco-Aguilar R, Mazorra-Manzano MA, Ramírez-Suárez JC. 2008. Functional properties of fish protein hydrolysates from Pacific whiting (Merluccius productus) muscle produced by a commercial protease. Food Chem. 109 (4): 782-789. DOI: https://doi.org/10.1016/j.foodchem.2008.01.047 DOI: https://doi.org/10.1016/j.foodchem.2008.01.047

Pereira NDLA, Fangio MF, Rodriguez YE, Bonadero MC, Harán NS, Fernández-Gimenez AV. 2022. Characterization of liquid protein hydrolysates shrimp industry waste: analysis of antioxidant and microbiological activity, and shelf life of final product. J Food Process Preserv. 46 (8): e15526. DOI: http://dx.doi.org/10.1111/jfpp.15526 DOI: https://doi.org/10.1111/jfpp.15526

Phanturat P, Benjakul S, Visessanguan W, Roytrakul S. 2010. Use of pyloric caeca extract from bigeye snapper (Priacanthus macracanthus) for the production of gelatin hydrolysate with antioxidative activity. LWT Food Sci Technol. 43: 86-97. DOI: https://doi.org/10.1016/j.lwt.2009.06.010 DOI: https://doi.org/10.1016/j.lwt.2009.06.010

Piotrowicz IBB, Mellado MMS. 2015. Antioxidant hydrolysates production from Argentine anchovy (Engraulis anchoita) with different enzymes. Int Food Res J. 22 (3): 999-1007.

Pires C, Clemente T, Batista I. 2013. Functional and antioxidative properties of protein hydrolysates from Cape hake by-products prepared by three different methodologies. J Sci Food Agric. 93 (4): 771-780. DOI: https://doi.org/10.1002/jsfa.5796 DOI: https://doi.org/10.1002/jsfa.5796

Pires C, Leitão M, Sapatinha M, Gonçalves A, Oliveira H, Nunes ML, Teixeira B, Mendes R, Camacho C, Machado M, et al. 2024. Protein hydrolysates from salmon heads and Cape hake by-products: comparing enzymatic method with subcritical water extraction on bioactivity properties. Foods. 13 (15): 2123. DOI: https://doi.org/10.3390/foods13152418 DOI: https://doi.org/10.3390/foods13152418

R Core Team. 2022. R: A language and environment for statistical computing (Version 4.3.1). R Foundation for Statistical Computing. https://www.r-project.org.

Raghavan S, Kristinsson HG, Leeuwenburgh C. 2008. Radical scavenging and reducing ability of tilapia (Oreochromis niloticus) protein hydrolysates. J Agric Food Chem. 56: 10359-10367. DOI: https://doi.org/10.1021/jf8017194 DOI: https://doi.org/10.1021/jf8017194

Samaranayaka AG, Ho TC, Li-Chan EC. 2007. Correlation of Kudoa spore counts with proteolytic activity and texture of fish mince from Pacific hake (Merluccius productus). J Aquat Food Prod Technol. 15 (4): 75-93. DOI: https://doi.org/10.5555/20073066467 DOI: https://doi.org/10.1300/J030v15n04_06

Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Free radical. Free Radic Biol Med. 26: 1231-1237. DOI: https://doi.org/10.1016/s0891-5849(98)00315-3 DOI: https://doi.org/10.1016/S0891-5849(98)00315-3

Sbroggio MF, Montilha MS, Figueiredo VRGD, Georgetti SR, Kurozawa LE. 2016. Influence of the degree of hydrolysis and type of enzyme on antioxidant activity of okara protein hydrolysates. Food Sci Technol. 36 (2): 375-381. DOI: https://doi.org/10.1590/1678-457X.000216 DOI: https://doi.org/10.1590/1678-457X.000216

Shekoohi N, Carson BP, Fitzgerald RJ. 2024. Antioxidative, glucose management, and muscle protein synthesis properties of fish protein hydrolysates and peptides. J Agric Food Chem. 72: 21301-21317. DOI: https://doi.org/10.1021/acs.jafc.4c02920 DOI: https://doi.org/10.1021/acs.jafc.4c02920

Shimada K, Fujikawa K, Yahara K, Nakamura T. 1992. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J Agric Food Chem. 40 (6): 945-948. DOI: https://doi.org/10.1021/jf00018a005 DOI: https://doi.org/10.1021/jf00018a005

Sila A, Bougatef A. 2016. Antioxidant peptides from marine by-products: isolation, identification and application in food systems. A review. J Funct Foods. 21: 10-26. DOI: https://doi.org/10.1016/j.jff.2015.11.007 DOI: https://doi.org/10.1016/j.jff.2015.11.007

Singh A, Kadam D, Gautam AR, Rengasamy KR, Aluko RE, Benjakul S. 2024. Angiotensin-I-converting enzyme and renin inhibitions by antioxidant shrimp shell protein hydrolysate and ultrafiltration peptide fractions. Food Biosci. 60: 104524. DOI: https://doi.org/10.1016/j.fbio.2024.104524 DOI: https://doi.org/10.1016/j.fbio.2024.104524

Wang Z, Liu X, Xie H, Liu Z, Rakariyatham K, Yu C, Zhou D. 2021. Antioxidant activity and functional properties of Alcalase-hydrolyzed scallop protein hydrolysate and its role in the inhibition of cytotoxicity in vitro. Food Chem. 344: 128566. DOI: https://doi.org/10.1016/j.foodchem.2020.128566 DOI: https://doi.org/10.1016/j.foodchem.2020.128566

Downloads

Published

2025-01-16

How to Cite

Liebana, C., Pereira, N. de los Ángeles, Fernández-Gimenez, A. and Fangio, M. F. (2025) “From waste to value: protein hydrolysates from byproducts of the Argentine hake (Merluccius hubbsi) processing using endogenous enzymes and Alcalase® 2.4L ”, Marine and Fishery Sciences (MAFIS), 38(2). doi: 10.47193/mafis.3822025010106.