De residuo a valor: hidrolizados proteicos de subproductos del procesamiento de la merluza argentina (Merluccius hubbsi) utilizando enzimas endógenas y Alcalasa® 2.4L
DOI:
https://doi.org/10.47193/mafis.3822025010106Palabras clave:
Gestión de residuos, hidrolizado de proteínas de pescado, actividad de peptidasa, grado de hidrólisis, propiedad antioxidanteResumen
La valorización de los subproductos pesqueros es fundamental para reducir los residuos y crear productos de alto valor. Los residuos de la merluza argentina (Merluccius hubbsi) podrían potenciar sus propiedades funcionales y antioxidantes a través de la hidrólisis, liberando péptidos con propiedades bioactivas. Los hidrolizados proteicos de merluza argentina tienen un gran potencial como ingredientes funcionales debido a sus propiedades bioactivas, pero optimizar los procesos de hidrólisis es esencial para mejorar el rendimiento y las características biofuncionales, como la actividad antioxidante. Se obtuvieron hidrolizados proteicos de merluza argentina mediante autólisis (Aut) y hidrólisis enzimática utilizando AlcalasaÒ 2.4 L a concentraciones de 0,24% y 2% (v/v) (Alc-0.24 y Alc-2), respectivamente, durante 150 min. Se evaluó la actividad de peptidasas alcalinas, el grado de hidrólisis y la actividad antioxidante utilizando ensayos de inhibición del radical 2,2-difenil-1-picrilhidrazilo (DPPH) y 2,2’-azino-bis (ácido 3-etilbenzotiazolina-6-sulfónico) ABTS·+. Todos los hidrolizados mantuvieron actividad de peptidasas alcalinas a lo largo del proceso. Los hidrolizados tratados con Alcalasa® 2.4L mostraron una actividad de peptidasas e un grado de hidrólisis significativamente mayores en comparación con Aut. A los 60 min, Alc-0.24 alcanzó niveles de actividad de peptidasas similares a los de Alc-2, y a los 30 min, ambos presentaron grados de hidrólisis comparables. La actividad de captura de ABTS·+ aumentó con el tiempo para Alc-0.24, siendo ambas concentraciones de Alcalasa® 2.4 L superiores a la autólisis. No se encontraron diferencias significativas entre Alc-0.24 y Alc-2. Aunque todos los hidrolizados mostraron actividad de captura de DPPH, no se detectaron diferencias significativas entre tratamientos o tiempos de reacción. Estos hallazgos destacan el potencial para producir hidrolizados proteicos de valor agregado a partir de residuos de merluza argentina.
Descargas
Métricas
Citas
Ananey-Obiri D, Matthews LG, Tahergorabi R. 2019. Proteins from fish processing by-products. In: Galanakis CM, editor. Proteins: sustainable source, processing and applications. Academic Press. p. 163-191. DOI: https://doi.org/10.1016/B978-0-12-816695-6.00006-4 DOI: https://doi.org/10.1016/B978-0-12-816695-6.00006-4
Asaduzzaman AKM, Hasan I, Rahman MH, Tareq ARM. 2020. Antioxidant and antiproliferative activity of phytoconstituents identified from Sargassum binderi seaweed extracts cultivated in Bangladesh. Int J Biosci. 16 (3): 481-494.
Baek HH, Cadwallader KR. 1996. Volatile compounds in flavor concentrates produced from crayfish-processing byproducts with and without protease treatment. J Agric Food Chem. 44 (10): 3262-3267. DOI: http://doi.org/10.1021/jf960023q DOI: https://doi.org/10.1021/jf960023q
Chalamaiah M, Jyothirmayi T, Diwan PV, Dinesh Kumar B. 2015. Antioxidant activity and functional properties of enzymatic protein hydrolysates from common carp (Cyprinus carpio) roe (egg). J Food Sci Technol. 52: 5817-5825. DOI: https://doi.org/10.1007/s13197-015-1714-6 DOI: https://doi.org/10.1007/s13197-015-1714-6
Cheung IWY, Cheung LKY, Tan NY, Li-Chan ECY. 2012. The role of molecular size in antioxidant activity of peptide fractions from Pacific hake (Merluccius productus) hydrolysates. Food Chem. 134 (3): 1297-1306. DOI: https://doi.org/10.1016/j.foodchem.2012.02.215 DOI: https://doi.org/10.1016/j.foodchem.2012.02.215
Fernández Herrero A, Vittone M, Salomone A. 2015. Biological silage of Merluccius hubbsi. Amino acid composition, degree of hydrolysis, and peptide size. Issues Biol Sci Pharm Res. 3 (6): 57-62.
Friedman IS, Behrens LA, Pereira NDLA, Contreras EM, Fernández-Gimenez AV. 2022. Digestive proteinases from the marine fish processing wastes of the South-West Atlantic Ocean: their partial characterization and comparison. J Fish Biol. 100 (1): 150-160. DOI: https://doi.org/10.1111/jfb.14929 DOI: https://doi.org/10.1111/jfb.14929
Friedman IS, Contreras EM, Fernández-Gime-nez AV. 2024. Catalytic stability of aspartic proteinases recovered from viscera of Merluccius hubbsi, Percophis brasiliensis, Urophicis brasiliensis, and Cynoscion guatucupa. Waste Biomass Valor. DOI: https://doi.org/10.1007/s12649-024-02717-8 DOI: https://doi.org/10.1007/s12649-024-02717-8
Gao R, Yu Q, Shen Y, Chu Q, Chen G, Fen S, Yang M, Yuan L, McClements DJ, Sun Q. 2021. Production, bioactive properties, and potential applications of fish protein hydrolysates: developments and challenges. Trends Food Sci Technol. 110: 687-699. DOI: https://doi.org/10.1016/j.tifs.2021.02.031 DOI: https://doi.org/10.1016/j.tifs.2021.02.031
García-Carreño FL. 1992. The digestive proteases of langostilla (Pleuroncodes planipes, decapoda): their partial characterization, and the effect of feed on their composition. Comp Biochem Physiol B Comp Biochem. 103: 575-578. DOI: https://doi.org/10.1016/0305-0491(92)90373-Y DOI: https://doi.org/10.1016/0305-0491(92)90373-Y
Gómez LJ, Gómez NA, Zapata JE, López-García G, Cilla A, Alegría A. 2020. Optimization of the red tilapia (Oreochromis spp.) viscera hydrolysis for obtaining iron-binding peptides and evaluation of in vitro iron bioavailability. Foods. 9: 883. DOI: https://doi.org/10.3390/foods9070883 DOI: https://doi.org/10.3390/foods9070883
Góngora HG, Ledesma P, Valvo VRL, Ruiz AE, Breccia JY. 2012. Screening of lactic acid bacteria for fermentation of minced wastes of Argentinean hake (Merluccius hubbsi). Food Bioprod Process. 90 (4): 767-772. DOI: https://doi.org/10.1016/j.fbp.2012.04.002
Henriques A, Vázquez JA, Valcarcel J, Mendes R, Bandarra NM, Pires C. 2021. Characterization of protein hydrolysates from fish discards and by-products from the North-West Spain fishing fleet as potential sources of bioactive peptides. Mar Drugs. 19: 338. DOI: https://doi.org/10.3390/md19060338 DOI: https://doi.org/10.3390/md19060338
Idowu AT, Benjakul S. 2019. Bitterness of fish protein hydrolysate and its debittering prospects. J Food Biochem. 43 (9): e12978. DOI: https://doi.org/10.1111/jfbc.12978 DOI: https://doi.org/10.1111/jfbc.12978
Karoud W, Ghlissi Z, Krichen F, Kallel R, Bougatef H, Zarai Z, Boudawara T, Sahnoun Z, Sila A, Bougatef A. 2020. Oil from hake (Merluccius merluccius): characterization, antioxidant activity, wound healing and anti-inflammatory effects. J Tissue Viability. 29 (2): 138-147. DOI: https://doi.org/10.1016/j.jtv.2020.01.002 DOI: https://doi.org/10.1016/j.jtv.2020.01.002
Karoud W, Sila A, Krichen F, Martinez-Alvarez O, Bougatef A. 2019. Characterization, surface properties and biological activities of protein hydrolysates obtained from hake (Merluccius merluccius) heads. Waste Biomass Valor. 10: 287-297. DOI: https://doi.org/10.1007/s12649-017-0069-9 DOI: https://doi.org/10.1007/s12649-017-0069-9
Klompong V, Benjakul S, Kantachote D, Shahidi F. 2007. Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the DH and enzyme type. Food Chem. 102: 1317-1327. DOI: https://doi.org/10.1016/j.foodchem.2006.07.016 DOI: https://doi.org/10.1016/j.foodchem.2006.07.016
Lamas DL, Yeannes MI, Massa AE 2015. Partial purification of proteolytic enzymes and characterization of trypsin from Merluccius hubbsi by-products. Internat J Food Nutrit. Sci. 4 (5): 2-11.
Latorres JM, Rios DG, Saggiomo G, Wasielesky W, Prentice-Hernandez C. 2018. Functional and antioxidant properties of protein hydrolysates obtained from white shrimp (Litopenaeus vannamei). J Food Sci Technol. 55: 721-729. DOI: https://doi.org/10.1007/s13197-017-2983-z DOI: https://doi.org/10.1007/s13197-017-2983-z
[MAGyP] Secretaría de Agricultura, Ganadería y Pesca. 2024. Desembarques de capturas marítimas totales. [accessed 2024 Sep 17]. https://www.magyp.gob.ar/sitio/areas/pesca_maritima/desembarques/lectura.php?imp=1&tabla=especie_mes_2018.
Martone CB, Borla OP, Sánchez JJ. 2005. Fishery by-product as a nutrient source for bacteria and archaea growth media. Bioresour Technol. 96 (3): 383-387. DOI: https://doi.org/10.1016/j.biortech.2004.04.008
Mazorra-Manzano MA, Pacheco-Aguilar R, Ramirez-Suarez JC, García-Sánchez G. 2008. Pacific whiting (Merluccius productus) underutilization in the Gulf of California: muscle autolytic activity characterization. Food Chem. 107 (1): 106-111. DOI: https://doi.org/10.1016/j.foodchem.2007.07.056 DOI: https://doi.org/10.1016/j.foodchem.2007.07.056
Mazorra-Manzano MA, Pacheco-Aguilar R, Ramírez-Suárez JC, Garcia-Sanchez G, Lugo-Sánchez ME. 2012. Endogenous proteases in Pacific whiting (Merluccius productus) muscle as a processing aid in functional fish protein hydrolysate production. Food Bioproc Technol. 5: 130-137. DOI: https://doi.org/10.1007/s11947-010-0374-9 DOI: https://doi.org/10.1007/s11947-010-0374-9
Moya-Moreira TF, Gonçalves OH, Leimann FV, Ribeiro RP. 2023. Fish protein hydrolysates: bioactive properties, encapsulation and new technologies for enhancing peptides bioavailability. Curr Pharm Des. 29 (11): 824-836. DOI: https://doi.org/10.2174/1381612829666230110141811 DOI: https://doi.org/10.2174/1381612829666230110141811
Nirmal NP, Santivarangkna C, Rajput MS, Benjakul S, Maqsood S. 2022. Valorization of fish byproducts: sources to end-product applications of bioactive protein hydrolysate. Compr Rev Food Sci Food Saf. 21 (2): 1803-1842. DOI: https://doi.org/10.1111/1541-4337.12917 DOI: https://doi.org/10.1111/1541-4337.12917
Nikoo M, Bejakul M, Benjakul S, Ahmadi Gablighi H. 2022. Protein hydrolysates derived from aquaculture and marine byproducts through autolytic hydrolysis. Compr Rev Food Sci Food Saf. 21 (6): 4872-4899. DOI: https://doi.org/10.1111/1541-4337.13060
Nikoo M, Regenstein JM, Noori F, Gheshlaghi SP. 2021. Autolysis of rainbow trout (Oncorhynchus mykiss) by-products: enzymatic activities, lipid and protein oxidation, and antioxidant activity of protein hydrolysates. LWT Food Sci Techol. 140: 110702. DOI: https://doi.org/10.1016/j.lwt.2020.110702
Ognjanović BI, Đorđević NZ, Perendija BR, Despotović SG, Žikić RV, Štajn AŠ, Saičić ZS. 2008. Concentration of antioxidant compounds and lipid peroxidation in the liver and white muscle of hake (Merluccius merluccius L.) in the Adriatic Sea. Arch Biol Sci. 60 (4): 601-607. DOI: https://doi.org/10.2298/ABS0804601O DOI: https://doi.org/10.2298/ABS0804601O
Ovissipour M, Rasco B, Shiroodi SG, Modanlow M, Gholami S, Nemati M. 2013. Antioxidant activity of protein hydrolysates from whole anchovy sprat (Clupeonella engrauliformis) prepared using endogenous enzymes and commercial proteases. J Sci Food Agric. 93 (7): 1718-1726. DOI: https://doi.org/10.1002/jsfa.5957 DOI: https://doi.org/10.1002/jsfa.5957
Ovissipour M, Safari R, Motamedzadegan A, Shabanpour B. 2009. Chemical and biochemical hydrolysis of Persian sturgeon (Acipenser persicus) visceral protein. Food Bioprocess Technol. 5: 460-465. DOI: https://doi.org/10.1007/s11947-009-0284-x DOI: https://doi.org/10.1007/s11947-009-0284-x
Pacheco-Aguilar R, Mazorra-Manzano MA, Ramírez-Suárez JC. 2008. Functional properties of fish protein hydrolysates from Pacific whiting (Merluccius productus) muscle produced by a commercial protease. Food Chem. 109 (4): 782-789. DOI: https://doi.org/10.1016/j.foodchem.2008.01.047 DOI: https://doi.org/10.1016/j.foodchem.2008.01.047
Pereira NDLA, Fangio MF, Rodriguez YE, Bonadero MC, Harán NS, Fernández-Gimenez AV. 2022. Characterization of liquid protein hydrolysates shrimp industry waste: analysis of antioxidant and microbiological activity, and shelf life of final product. J Food Process Preserv. 46 (8): e15526. DOI: http://dx.doi.org/10.1111/jfpp.15526 DOI: https://doi.org/10.1111/jfpp.15526
Phanturat P, Benjakul S, Visessanguan W, Roytrakul S. 2010. Use of pyloric caeca extract from bigeye snapper (Priacanthus macracanthus) for the production of gelatin hydrolysate with antioxidative activity. LWT Food Sci Technol. 43: 86-97. DOI: https://doi.org/10.1016/j.lwt.2009.06.010 DOI: https://doi.org/10.1016/j.lwt.2009.06.010
Piotrowicz IBB, Mellado MMS. 2015. Antioxidant hydrolysates production from Argentine anchovy (Engraulis anchoita) with different enzymes. Int Food Res J. 22 (3): 999-1007.
Pires C, Clemente T, Batista I. 2013. Functional and antioxidative properties of protein hydrolysates from Cape hake by-products prepared by three different methodologies. J Sci Food Agric. 93 (4): 771-780. DOI: https://doi.org/10.1002/jsfa.5796 DOI: https://doi.org/10.1002/jsfa.5796
Pires C, Leitão M, Sapatinha M, Gonçalves A, Oliveira H, Nunes ML, Teixeira B, Mendes R, Camacho C, Machado M, et al. 2024. Protein hydrolysates from salmon heads and Cape hake by-products: comparing enzymatic method with subcritical water extraction on bioactivity properties. Foods. 13 (15): 2123. DOI: https://doi.org/10.3390/foods13152418 DOI: https://doi.org/10.3390/foods13152418
R Core Team. 2022. R: A language and environment for statistical computing (Version 4.3.1). R Foundation for Statistical Computing. https://www.r-project.org.
Raghavan S, Kristinsson HG, Leeuwenburgh C. 2008. Radical scavenging and reducing ability of tilapia (Oreochromis niloticus) protein hydrolysates. J Agric Food Chem. 56: 10359-10367. DOI: https://doi.org/10.1021/jf8017194 DOI: https://doi.org/10.1021/jf8017194
Samaranayaka AG, Ho TC, Li-Chan EC. 2007. Correlation of Kudoa spore counts with proteolytic activity and texture of fish mince from Pacific hake (Merluccius productus). J Aquat Food Prod Technol. 15 (4): 75-93. DOI: https://doi.org/10.5555/20073066467 DOI: https://doi.org/10.1300/J030v15n04_06
Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Free radical. Free Radic Biol Med. 26: 1231-1237. DOI: https://doi.org/10.1016/s0891-5849(98)00315-3 DOI: https://doi.org/10.1016/S0891-5849(98)00315-3
Sbroggio MF, Montilha MS, Figueiredo VRGD, Georgetti SR, Kurozawa LE. 2016. Influence of the degree of hydrolysis and type of enzyme on antioxidant activity of okara protein hydrolysates. Food Sci Technol. 36 (2): 375-381. DOI: https://doi.org/10.1590/1678-457X.000216 DOI: https://doi.org/10.1590/1678-457X.000216
Shekoohi N, Carson BP, Fitzgerald RJ. 2024. Antioxidative, glucose management, and muscle protein synthesis properties of fish protein hydrolysates and peptides. J Agric Food Chem. 72: 21301-21317. DOI: https://doi.org/10.1021/acs.jafc.4c02920 DOI: https://doi.org/10.1021/acs.jafc.4c02920
Shimada K, Fujikawa K, Yahara K, Nakamura T. 1992. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J Agric Food Chem. 40 (6): 945-948. DOI: https://doi.org/10.1021/jf00018a005 DOI: https://doi.org/10.1021/jf00018a005
Sila A, Bougatef A. 2016. Antioxidant peptides from marine by-products: isolation, identification and application in food systems. A review. J Funct Foods. 21: 10-26. DOI: https://doi.org/10.1016/j.jff.2015.11.007 DOI: https://doi.org/10.1016/j.jff.2015.11.007
Singh A, Kadam D, Gautam AR, Rengasamy KR, Aluko RE, Benjakul S. 2024. Angiotensin-I-converting enzyme and renin inhibitions by antioxidant shrimp shell protein hydrolysate and ultrafiltration peptide fractions. Food Biosci. 60: 104524. DOI: https://doi.org/10.1016/j.fbio.2024.104524 DOI: https://doi.org/10.1016/j.fbio.2024.104524
Wang Z, Liu X, Xie H, Liu Z, Rakariyatham K, Yu C, Zhou D. 2021. Antioxidant activity and functional properties of Alcalase-hydrolyzed scallop protein hydrolysate and its role in the inhibition of cytotoxicity in vitro. Food Chem. 344: 128566. DOI: https://doi.org/10.1016/j.foodchem.2020.128566 DOI: https://doi.org/10.1016/j.foodchem.2020.128566
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Clara Liebana, Nair de los Ángeles Pereira, Analia Fernández-Gimenez, Maria Florencia Fangio
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los autores de los artículos publicados en Marine and Fishery Sciences conservan los derechos de autor de sus artículos, a excepción de las imágenes de terceros y otros materiales añadidos por Marine and Fishery Sciences, que están sujetos a los derechos de autor de sus respectivos propietarios. Por lo tanto, los autores son libres de difundir y volver a publicar sus artículos, sujeto a los requisitos de los propietarios de derechos de autor de terceros y sujeto a que la publicación original sea completamente citada. Los visitantes también pueden descargar y reenviar artículos sujetos a los requisitos de citas. La capacidad de copiar, descargar, reenviar o distribuir cualquier material siempre está sujeta a los avisos de derechos de autor que se muestran. Los avisos de copyright deben mostrarse de manera prominente y no pueden borrarse, eliminarse u ocultarse, total o parcialmente. El autoalmacenamiento en servidores y repositorios de preimpresión está permitido para todas las versiones.
Esta revista ofrece a los autores una política de acceso abierto. Los usuarios pueden leer, descargar, copiar, distribuir, imprimir, buscar o vincular los textos completos de los artículos, o usarlos para cualquier otro propósito legal dentro de la licencia Creative Commons 4.0 (BY-NC-SA), sin solicitar permiso previo del editor o del autor. Esto está de acuerdo con la definición BOAI de acceso abierto.