Population assessment of Micropogonias furnieri on the coast of Rio de Janeiro, Brazil, using a length-based analysis

Authors

  • Marcus R. Costa Departamento de Biologia Marinha, Universidade Federal Fluminense, Rua Professor Marcos Waldemar de Freitas Reis S/N, Campus do Gragoatá, Niterói, Brazil. Programa de Pós-Graduação em Biologia Marinha e Ambientes Costeiros, Universidade Federal Fluminense, Rua Professor Marcos Waldemar de Freitas Reis S/N, Campus do Gragoatá, Niterói, Brazil https://orcid.org/0000-0002-0737-1184
  • Rafael de Almeida Tubino Programa de Pós-Graduação em Biologia Marinha e Ambientes Costeiros, Universidade Federal Fluminense, Rua Professor Marcos Waldemar de Freitas Reis S/N, Campus do Gragoatá, Niterói, Brazil - Departamento de Biologia Animal, Universidade Federal Rural do Rio de Janeiro, BR-465, km 7, Seropédica, Brazil https://orcid.org/0000-0002-3175-4724
  • Pablo Mendonça Programa de Pós-Graduação em Biologia Marinha e Ambientes Costeiros, Universidade Federal Fluminense, Rua Professor Marcos Waldemar de Freitas Reis S/N, Campus do Gragoatá, Niterói, Brazil https://orcid.org/0000-0001-5001-138X
  • Felipe Douglas Mendonça Cadilho Programa de Pós-Graduação em Biologia Marinha e Ambientes Costeiros, Universidade Federal Fluminense, Rua Professor Marcos Waldemar de Freitas Reis S/N, Campus do Gragoatá, Niterói, Brazil https://orcid.org/0000-0002-6205-3517
  • Cassiano Monteiro Neto Departamento de Biologia Marinha, Universidade Federal Fluminense, Rua Professor Marcos Waldemar de Freitas Reis S/N, Campus do Gragoatá, Niterói, Brazil - Programa de Pós-Graduação em Biologia Marinha e Ambientes Costeiros, Universidade Federal Fluminense, Rua Professor Marcos Waldemar de Freitas Reis S/N, Campus do Gragoatá, Niterói, Brazil https://orcid.org/0000-0001-9342-8089

DOI:

https://doi.org/10.47193/mafis.3832025010709

Keywords:

Whitemouth croaker, size composition, fish growth, mortality, life-history, fisheries management

Abstract

Size structure was used as a proxy to describe the population dynamics of Micropogonias furnieri in a marine conservation unit in the southwest Atlantic Ocean. Length-based population assessment revealed the following estimates: asymptotic length (L¥) = 65.86 cm, growth coefficient (K) = 0.11 year-1, theoretical age of the fish (t0) = -0.99, natural mortality (M) = 0.30 year-1, instantaneous mortality (Z) = 0.35 year-1, fishing mortality (F) = 0.05 year-1, and exploitation rate (Ecur) = 0.14. The maximum (Emax) and optimum (E50%) exploitation rates were 0.61 and 0.31, respectively. Both raw data and corrected probability of capture indicated recruitment from April to June. Individuals between 20.00-44.00 cm in total length (TL) dominated the entire population. The length-based spawning potential ratio assessment model indicated that M. furnieri becomes vulnerable at average sizes of 50% selectivity (LS50) = 21.38 cm and 95% selectivity (LS95) = 31.62 cm, which is between the transition from the juvenile to the adult, and the length was similar to that of the first sexual maturity. Fishing pressure, estimated as F/M = 0.29 through the spawning potential ratio (SPR) model, and SPR values ranging between 44-68%, suggest that this portion of the M. furnieri population has been exploited within a safe range, considering the 50% limit of its reproductive potential. In line with this, the evaluated length structure showed similarities with regional studies, and also reflected the unique RESEXMAR-Itaipu reference points, i.e. F < M and Ecur < E50% (the exploitation rate at which 50% of the spawning biomass is reduced). Our results suggest that length-based analysis may be a useful tool for assessing data-poor fisheries because it enables the inclusion of several years of length-frequency data and multiple gears with minimal prerequisites. Additionally, it provides an opportunity to estimate other life-history parameters used in stock assessments.

Downloads

Download data is not yet available.

References

Acha EM, Mianzan H, Lasta CA, Guerrero RA. 1999. Estuarine spawning of the whitemouth croaker Micropogonias furnieri (Pisces: Sciaenidae), in the Río de la Plata, Argentina. Mar Freshw Res. 50 (1): 57-65. DOI: https://doi.org/10.1071/MF98045

Albuquerque CQ, Miekeley N, Muelbert JH, Walther BD, Jaureguizar AJ. 2012. Estuarine dependency in a marine fish evaluated with otolith chemistry. Mar Biol. 159: 2229-2239. DOI: https://doi.org/10.1007/s00227-012-2007-5

Amin SN, Arshad A, Bujang JS, Siraj SS. 2008. Growth, mortality and yield-per-recruit of sergestid shrimp, Acetes intermedius Omori, 1975 (Decapoda: Sergestidae) from length frequency analysis in the coastal waters of Malacca, Peninsular Malaysia. Pertanika J Trop Agric Sci. 31 (1): 55-66.

Amorim RB, Monteiro-Neto C. 2016. Marine protected area and the spatial distribution of the gill net fishery in Copacabana, Rio de Janeiro, RJ, Brazil. Braz J Biol. 76 (1): 1-9. DOI: https://doi.org/10.1590/1519-6984.06614

Ávila-da-Silva AO, Carneiro MH, Mendonça JT, Servo GJM, Bastos GCC, Batista PA. 2007. Produção pesqueira marinha do Estado de São Paulo no ano de 2005. Série Relatórios Técnicos. 26: 1-44.

Bentes B, Martinelli-Lemos JM, Lutz IAF, Nascimento MS, Isaac VJ. 2016. Population dynamics of Macrobrachium amazonicum (Heller, 1862) (Decapoda: Palaemonidae) in a Brazilian Amazon Estuary. Pan Am J Aquat Sci. 11 (1): 1-17.

Borthagaray AI, Verocai J, Norbis W. 2011. Age validation and growth of Micropogonias furnieri (Pisces-Sciaenidae) in a temporally open coastal lagoon (South-western Atlantic-Rocha-Uruguay) based on otolith analysis. J Appl Ichthyol. 27 (5): 1212-1217. DOI: https://doi.org/10.1111/j.1439-0426.2011.01778.x

Braverman MS, Acha EM, Gagliardini DA, Rivarossa M. 2009. Distribution of whitemouth croaker (Micropogonias furnieri, Desmarest 1823) larvae in the Río de la Plata estuarine front. Estuar Coast Shelf S. 82 (4): 557-565. DOI: https://doi.org/10.1016/j.ecss.2009.02.018

Carneiro MH. 2007. Diagnóstico dos recursos pesqueiros marinhos, Cynoscion jamaicensis, Macrodon ancylodom e Micropogonias furnieri (Perciformes: Sciaenidae) da região sudeste-sul do Brasil, entre as latitudes 23° e 28° 40’ S [PhD thesis]. São Carlos: Universidade Federal de São Carlos.

Castro PMG, Cergole MC, Carneiro MH, Mucinato CMD, Servo GJM. 2002. Growth, mortality and exploitation rate of goete, Cynoscion jamaicensis (Perciformes: Sciaenidae), in Southeast Brazil coast. Bol Inst Pesca. 28 (2): 141-153.

Cergole MC, Ávila-da-Silva AO, Rossi-Wongtschowski CLDB, editors. 2005. Análise das principais pescarias comerciais da região Sudeste-Sul do Brasil: dinâmica populacional das espécies em explotação. São Paulo: Instituto Oceanográfico - USP. Série Documentos Revizee: Score Sul.

Cergole MC, Rossi-Wongtschowski CLDB, editors. 2003. Dinâmica das frotas pesqueiras: análise das principais pescarias comerciais do Sudeste-Sul do Brasil. São Paulo: Evoluir. 376 p.

Christy FT Jr. 1982. Territorial use rights in marine fisheries: definitions and conditions. FAO Fish Tech Pap. 227. 10 p.

Cope JM, Punt AE. 2009. Length-based reference points for data-limited situations: applications and restrictions. Mar Coast Fish. 1 (1): 169-186. DOI: https://doi.org/10.1577/C08-025.1

Costa MR, Araújo FG. 2003. Use of a tropical bay in southeastern Brazil by juvenile and subadult Micropogonias furnieri (Perciformes, Sciaenidae). ICES J Mar Sci. 60 (2): 268-277. DOI: https://doi.org/10.1016/S1054-3139(02)00272-2

Dias M, Zamboni A, Canton L. 2022. Auditoria da pesca: Brasil 2021 [livro eletrônico]: uma avaliação integrada da governança, da situação dos estoques e das pescarias. 2nd ed. Brasília: Oceana Brasil.

[FIPERJ] Fundação Instituto de Pesca do Estado do Rio de Janeiro. 2020. Estatística Pesqueira do Estado do Rio de Janeiro. PMAP-RJ, Projeto de Monitoramento da Atividade Pesqueira no Estado do Rio de Janeiro (2018-2019). In: Projeto de Monitoramento da Atividade Pesqueira no Estado do Rio de Janeiro. Relatório Técnico Consolidado Final. 1. [accessed 2021 Feb 2]. http://www.fiperj.rj.gov.br/index.php/publicacao/index/1.

Fonteles-Filho AA. 2011. Oceanografia, biologia e dinâmica populacional de recursos pesqueiros. Fortaleza: Expressão Gráfica e Editora, 464 p.

Franco TP, Vilasboa A, Araújo FG, Gama JM, Correia AT. 2023. Identifying whitemouth croaker (Micropogonias furnieri) populations along the Rio de Janeiro Coast, Brazil, through microsatellite and otolith analyses. Biology. 12 (3): 360. DOI: https://doi.org/10.3390/biology12030360

Froese R. 2006. Cube law, condition factor and weight-length relationships: history, meta‐analysis and recommendations. J Appl Ichthyol. 22 (4): 241-253. DOI: https://doi.org/10.1111/j.1439-0426.2006.00805.x

Froese R, Winker H, Gascuel D, Sumaila UR, Pauly D. 2016. Minimizing the impact of fishing. Fish Fish. 17 (3): 785-802. DOI: https://doi.org/10.1111/faf.12146

Gayanilo FC Jr, Sparre P, Pauly D. 1994. The FAO-ICLARM stock assessment tools (FISAT) User’s Guide. FAO Comput Inf Ser (Fish). 7. 126 p.

Gayanilo FC Jr, Sparre P, Pauly D. 2002. FiSAT II: FAO-ICLARM stock assessment tools II. Version 1.0. Rome: FAO. [accessed 2023 Sep 12]. https://www.fao.org/fishery/en/topic/16072/en.

Gayanilo FC Jr, Sparre P, Pauly D. 2005. FAO-ICLARM stock assessment tools II (FiSAT II). Revised version. User’s guide. FAO Comput Inf Ser (Fish). 8, Revised version. 168 p.

García CB, Duarte LO. 2006. Length-based estimates of growth parameters and mortality rates of fish populations of the Caribbean Sea. J Appl Ichthyol. 22 (3): 193-200. DOI: https://doi.org/10.1111/j.1439-0426.2006.00720.x

Gulland JA. 1971. Science and fishery management. ICES J Mar Sci. 33 (3): 471-477. DOI: https://doi.org/10.1093/icesjms/33.3.471

Haimovici M, Cardoso LG. 2017. Long-term changes in the fisheries in the Patos Lagoon estuary and adjacent coastal waters in Southern Brazil. Mar Biol Res. 13 (1): 135-150. DOI: https://doi.org/10.1080/17451000.2016.1228978

Haimovici M, Cardoso LG, Umpierre RG. 2016. Stocks and management units of Micropogonias furnieri (Desmarest, 1823) in southwestern Atlantic. Latin Am J Aquat Res. 44 (5): 1080-1095. DOI: https://doi.org/10.3856/vol44-issue5-fulltext-18

Haimovici M, Cavole LM, Cope JM, Cardoso LG. 2021. Long-term changes in population dynamics and life history contribute to explain the resilience of a stock of Micropogonias furnieri (Sciaenidae, Teleostei) in the SW Atlantic. Fish Res. 237: 105878. DOI: https://doi.org/10.1016/j.fishres.2021.105878

Haimovici M, Ignacio JM. 2005. Micropogonias furnieri (Desmarest, 1823). In: Rossi CLW, Cergole MC, Ávila-da-Silva AO, editors. Análise das principais pescarias comerciais da região sudeste-sul do Brasil: dinâmica populacional das espécies em exploração. Série Documentos REVIZEE-Score Sul. São Paulo (SP): Instituto Oceanográfico da Universidade de São Paulo. p. 101-107.

Haimovici M, Umpierre RG. 1996. Variaciones estacionales en la estructura poblacional y cambios de crecimiento de la corvina Micropogonias furnieri (Desmarest, 1823) en el extremo sur de Brasil. Atlantica. 18: 179-202.

Hordyk A, Ono K, Sainsbury K, Loneragan N, Prince JD. 2015a. Some explorations of the life history ratios to describe length composition, spawning-per-recruit, and the spawning potential ratio. ICES J Mar Sci. 72 (1): 204-216. DOI: https://doi.org/10.1093/icesjms/fst235

Hordyk A, Ono K, Valencia S, Loneragan N, Prince JD. 2015b. A novel length-based empirical estimation method of spawning potential ratio (SPR), and tests of its performance, for small-scale, data-poor fisheries. ICES J Mar Sci. 72 (1): 217-231. DOI: https://doi.org/10.1093/icesjms/fsu004

Isaac VJ. 1988. Synopsis of biological data on the whitemouth croaker, Micropogonias furnieri (Desmarest, 1823). FAO Fish Synop. 150. 35 p.

Jaureguizar AJ, Menni R, Bremec C, Mianzan H, Lasta C. 2003. Fish assemblage and environmental patterns in the Río de la Plata estuary. Estuar Coast Shelf Sci. 56 (5-6): 921-933.

Jennings S, Kaiser MJ, Reynolds JD. 2001. Marine fisheries ecology. Oxford: Blackwell Science. 417 p.

Jensen AL. 1996. Beverton and Holt life history invariants result from optimal trade-off of reproduction and survival. Can J Fish Aquat Sci. 53 (4): 820-822. DOI: https://doi.org/10.1139/f95-233

Jones R. 1984. Assessing the effects of changes in exploitation pattern using length composition data (with notes on VPA and cohort analysis). FAO Fish Tech Pap. 256. 118 p.

Lepak JM, Cathcart CN, Hooten MB. 2012. Otolith mass as a predictor of age in kokanee salmon (Oncorhynchus nerka) from four Colorado reservoirs. Can J Fish Aquat Sci. 69 (10): 1569-1575. DOI: https://doi.org/10.1139/f2012-081

Lin YJ, Tzeng WN. 2010. Vital population statistics based on length frequency analysis of the exploited Japanese eel (Anguilla japonica) stock in the Kao-Ping River, southern Taiwan. J Appl Ichthyol. 26 (3): 424-431. DOI: https://doi.org/10.1111/j.1439-0426.2010.01453.x

Lopes MS, Bertucci TCP, Rapagnã L, Tubino RA, Monteiro-Neto C, Tomas ARG, Tenório MC, Lima T, Souza R, Carrillo-Briceño JD, et al. 2016. The path towards endangered species: prehistoric fisheries in southeastern Brazil. PLoS ONE. 11 (6): e0154476. DOI: https://doi.org/10.1371/journal.pone.0154476

Loto L, Lobão R, Silva EP, Monteiro-Neto C. 2019. Fishermen ecological knowledge and complex adaptive systems: an interpretative model for small-scale fisheries. Ambient Soc. 22: e01401. DOI: https://doi.org/10.1590/1809-4422asoc0140r1vu19L4TD

Loto L, Monteiro-Neto C, Martins RRM, de Almeida Tubino R. 2018. Temporal changes of a coastal small-scale fishery system within a tropical metropolitan city. Ocean Coast Manage. 153: 203-214. DOI: https://doi.org/10.1016/j.ocecoaman.2017.12.004

Manickchand-Heileman SC, Kenny JS. 1990. Reproduction, age, and growth of the whitemouth croaker Micropogonias furnieri (Desmarest 1823) in Trinidad waters. Fish Bull. 88 (3): 523-529.

Mateus LA, Penha JM. 2007. Dinâmica populacional de quatro espécies de grandes bagres na bacia do rio Cuiabá, Pantanal norte, Brasil (Siluriformes, Pimelodidae). Rev Bras Zool. 24: 87-98. DOI: https://doi.org/10.1590/S0101-81752007000100012

Mildenberger TK, Taylor MH, Wolff AM. 2017a. TropFishR: tropical fisheries analysis with R. R package version 1. [accessed 2023 Oct 23]. https://github.com/tokami/TropFishR

Mildenberger TK, Taylor MH, Wolff AM. 2017b. TropFishR: an R package for fisheries analysis with length-frequency data. Methods Ecol Evol. 8 (11): 1520-1527. DOI: https://doi.org/10.1111/2041-210X.12791

Mozo EC, Barandica JCN, Racedo JB. 2006. Dinámica poblacional del coroncoro Micropogonias furnieri (Pisces: Sciaenidae) en la ciénaga grande de Santa Marta, Caribe Colombiano. Bol Invest Mar Cost. 35 (1): 37-58.

[MPA] Ministério da Pesca e Aquicultura. 2012. Boletim Estatístico da Pesca e Aquicultura-Brasil 2010. Brasília: Ministério da Pesca e Aquicultura. 129 p.

Mulato IP, Correa B, Vianna M. 2015. Time-space distribution of Micropogonias furnieri (Perciformes, Sciaenidae) in a tropical estuary in Southeastern Brazil. Bol Inst Pesca. 41 (1): 1-18.

Norbis W, Galli O. 2013. Spatial co-occurrence of two Sciaenid species (Micropogonias furnieri and Cynoscion guatucupa) subject to fishing in the Río de La Plata and oceanic coast of Uruguay: ecological or technological interdependence. Bol Inst Pesca. 39 (2): 137-148.

Norbis W, Verocai J. 2005. Presence of two whitemouth croaker (Micropogonias furnieri, Pisces: Sciaenidae) groups in the Río de la Plata spawning coastal area as consequence of reproductive migration. Fish Res. 74 (1-3): 134-141. DOI: https://doi.org/10.1016/j.fishres.2005.03.005

Pacheco C, Bustamante C, Araya M. 2021. Mass‐effect: understanding the relationship between age and otolith weight in fishes. Fish Fish. 22 (3): 623-633. DOI: https://doi.org/10.1111/faf.12542

Panhwar SK, Liu Q. 2013. Population statistics of the migratory hilsa shad, Tenualosa ilisha, in Sindh, Pakistan. J Appl Ichthyol. 29 (5): 1091-1096. DOI: https://doi.org/10.1111/jai.12134

Patterson K. 1992. Fisheries for small pelagic species: an empirical approach to management targets. Rev Fish Biol Fish. 2: 321-338. DOI: https://doi.org/10.1007/BF00043521

Pauly D. 1980. On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. ICES J Mar Sci. 39 (2): 175-192. DOI: https://doi.org/10.1093/icesjms/39.2.175

Pauly D. 1982. Studying single-species dynamics in a tropical multispecies context. In: Pauly D, Murphy GI, editors. Theory and management of tropical fisheries. ICLARM Conf Proc. 9: 33-70.

Pauly D. 1990. Length-converted catch curves and the seasonal growth of fishes. Fishbyte. 8 (3): 24-29.

Pauly D. 1991. Growth performance in fishes: rigorous description of patterns as a basis for understanding causal mechanisms. Aquabyte. 4 (3): 3-6. https://hdl.handle.net/20.500.12348/3110.

Pauly D, David N. 1981. ELEFAN I, a BASIC program for the objective extraction of growth parameters from length-frequency data. Meeresforschung. 28 (4): 205-211.

Pauly D, Morgan GR, editors. 1987. Length-based methods in fisheries research. Vol. 13. Manila: International Center for Living Aquatic Resources Management. 468 p.

Pauly D, Munro JL. 1984. Once more on the comparison of growth in fish and invertebrates. Fishbyte. 2 (1): 1-21.

Prince J, Hordyk A, Valencia SR, Loneragan N, Sainsbury K. 2015. Revisiting the concept of Beverton-Holt life-history invariants with the aim of informing data-poor fisheries assessment. ICES J Mar Sci. 72 (1): 194-203. DOI: https://doi.org/10.1093/icesjms/fsu011

Quynh CNT, Schilizzi S, Hailu A, Iftekhar S. 2017. Territorial use rights for fisheries (TURFs): state of the art and the road ahead. Mar Policy. 75: 41-52. DOI: https://doi.org/10.1016/j.marpol.2016.10.004

R Core Team. 2016. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. [accessed 2023 Oct 15]. https://www.R-project.org/.

Raza H, Liu Q, Alam MS, Han Y. 2022. Length based stock assessment of five fish species from the marine water of Pakistan. Sustainability. 14 (3): 1587. DOI: https://doi.org/10.3390/su14031587

Robert MDC, Chaves PDT. 2001. Observações sobre o ciclo de vida da corvina, Micropogonias furnieri (Desmarest) (Teleostei, Sciaenidae), no litoral do Estado do Paraná, Brasil. Rev Bras Zool. 18: 421-428. DOI: https://doi.org/10.1590/S0101-81752001000200013

Santos RS, Costa MR, Araújo FG. 2017. Age and growth of the white croaker Micropogonias furnieri (Perciformes: Sciaenidae) in a coastal area of southeastern Brazilian bight. Neotrop Ichthyol. 15: e160131. DOI: https://doi.org/10.1590/1982-0224-20160131

Santos RS, Silva JPC, Costa MR, Araújo FG. 2015. O tamanho de primeira maturação como parâmetro para estabelecimento de tamanho mínimo de captura para corvina no sudeste do Brasil. Bol Inst Pesca. 41 (3): 507-518.

Sá-Oliveira JC, Angelini R, Isaac-Nahum VJ. 2015. Population parameters of the fish fauna in a long-established Amazonian reservoir (Amapá, Brazil). J Appl Ichthyol. 31 (2): 290-295. DOI: https://doi.org/10.1111/jai.12667

Schwamborn R, Freitas MO, Moura RL, Aschenbrenner A. 2023. Comparing the accuracy and precision of novel bootstrapped length-frequency and length-at-age (otolith) analyses, with a case study of lane snapper (Lutjanus synagris) in the SW Atlantic. Fish Res. 264: 106735. DOI: https://doi.org/10.1016/j.fishres.2023.106735

Schwamborn R, Mildenberger TK, Taylor MH. 2019. Assessing sources of uncertainty in length-based estimates of body growth in populations of fishes and macroinvertebrates with bootstrapped ELEFAN. Ecol Model. 393: 37-51. DOI: https://doi.org/10.1016/j.ecolmodel.2018.12.001

Schwingel PR, Castello JP. 1990. Validación de la edad y el crecimiento de la corvina (Micropogonias furnieri) en el sur de Brasil. Frente Marít. 7: 19-24.

Scrucca L. 2013. GA: A package for genetic algorithms in R. J Stat Softw. 53 (4): 1-37. DOI: https://doi.org/10.18637/jss.v053.i04

Silva JPC, Santos RS, Costa MR, Araujo FG. 2014. Growth parameters and mortality of Eucinostomus argenteus (Baird & Girard, 1854) captured in Guaratiba mangrove, Sepetiba Bay, RJ. Bol Inst Pesca. 40 (4): 657-667.

Silva LMC, Machado IC, dos Santos Tutui SL, Tomás ARG. 2020. Local ecological knowledge (LEK) concerning snook fishers on estuarine waters: insights into scientific knowledge and fisheries management. Ocean Coast Manage. 186: 105088. DOI: https://doi.org/10.1016/j.ocecoaman.2019.105088

Somers IF. 1988. On a seasonally oscillating growth function. Fishbyte. 6 (1): 8-11.

Soomai S, Ehrhardt NM, Cochrane K, Phillips T. 2000. Stock assessment of two sciaenid fisheries in the west coast of Trinidad and Tobago. In: Report of the third workshop on the assessment of shrimp and groundfish fisheries on the Brazil-Guianas shelf, 1999 May 24-Jun 10, Belém, Brazil. FAO Fish Rep. 628: 124-137.

Sparre P, Ursin E, Venema SC. 1989. Introduction to tropical fish stock assessment. Part 1, manual. FAO Fish Tech Pap. 306/1.

Sparre P, Venema SC. 1997. Introducción a la evaluación de recursos pesqueros tropicales. Parte 1: manual. FAO Fish Tech Pap. 306/1, Revised 2.

Taylor CC. 1958. Cod growth and temperature. J Cons Int Explor Mer. 23: 366-370.

Tubino RA, Monteiro-Neto C, Moraes LE de S, Paes ET. 2007. Artisanal fisheries production in the coastal zone of Itaipu, Niterói, RJ, Brazil. Braz J Oceanogr. 55 (3): 187-197.

Tubino RA, Marques Jr AN, Silva EP, Lobão RJS, Seara TF, Monteiro-Neto C. 2014. Mudanças históricas e perda de referenciais em uma pescaria artesanal na região metropolitana do Rio de Janeiro. In: Haimovici M, Andriguetto Filho JM, Sunye PS, editors. A pesca marinha e estuarina no Brasil: estudos de caso multidisciplinares. Rio Grande: Editora da FURG. p. 112-123.

Vasconcellos M, Diegues AC, Kalikoski DC. 2011. Coastal fisheries of Brazil. In: Salas S, Chuenpagdee R, Charles A, Seijo JC, editors. Coastal fisheries of Latin America and the Caribbean. FAO Fish Aquacul Tech Pap. 544: 73-116.

Vaz-dos-Santos AM, Rossi-Wongtschowski CLD, de Figueiredo JL. 2007. Recursos pesqueiros compartilhados: bioecologia, manejo e aspectos aplicados no Brasil. Bol Inst Pesca. 33 (2): 273-292.

Vazzoler G. 1962. Sobre a biologia da corvina da costa sul do Brasil. Bol Inst Oceanog S Paulo. 13 (1): 53-102.

Velasco G, Reis EG, Vieira JP. 2007. Calculating growth parameters of Genidens barbus (Siluriformes, Ariidae) using length composition and age data. J Appl Ichthyol. 23 (1): 64-69. DOI: https://doi.org/10.1111/j.1439-0426.2006.00793.x

Vögler R, González C, Segura AM. 2020. Spatio-temporal dynamics of the fish community associated with artisanal fisheries activities within a key marine protected area of the Southwest Atlantic (Uruguay). Ocean Coast Manage. 190: 105175. DOI: https://doi.org/10.1016/j.ocecoaman.2020.105175

Volpedo AV, Vaz-dos-Santos AM, editors. 2015. Métodos de estudios con otolitos: principios y aplicaciones/ Métodos de estudos com otólitos: princípios e aplicações. 1th ed. Buenos Aires: CAFP-BA-PIESCI. p. 480.

von Bertalanffy L. 1938. A quantitative theory of organic growth (inquires on growth laws II). Hum Biol. 10 (2): 181-231.

Zar JH. 1984. Biostatistical analysis. 2nd ed. Englewood Cliffs: Prentice-Hall. 718 p.

Zhou S, Milton DA, Fry GC. 2012. Integrated risk analysis for rare marine species impacted by fishing: sustainability assessment and population trend modelling. ICES J Mar Sci. 69 (2): 271-280. DOI: https://doi.org/10.1093/icesjms/fss009

Downloads

Published

2025-06-10

How to Cite

Costa, M. R., de Almeida Tubino, R., Mendonça, P., Douglas Mendonça Cadilho, F., & Monteiro Neto, C. (2025). Population assessment of Micropogonias furnieri on the coast of Rio de Janeiro, Brazil, using a length-based analysis. Marine and Fishery Sciences (MAFIS), 38(3), 507-525. https://doi.org/10.47193/mafis.3832025010709

Similar Articles

21-30 of 166

You may also start an advanced similarity search for this article.