Morphology of sagitta, lapillus and asteriscus of Patagonian Genidens barbus

Authors

  • María D. González Dubox Laboratorio de Contaminación Ambiental (CIT Río Negro-CONICET), Sede Atlántica, Universidad Nacional de Río Negro, Rotonda Cooperación y RP Nº 1, 8500 - Viedma, Argentina
  • Sofía Córdoba Gironde Laboratorio de Contaminación Ambiental (CIT Río Negro-CONICET), Sede Atlántica, Universidad Nacional de Río Negro, Rotonda Cooperación y RP Nº 1, 8500 - Viedma, Argentina
  • Laura S. López Greco Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA) (UBA-CONICET) - Laboratorio de Biología de la Reproducción y el Crecimiento de Crustáceos Decápodos, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA) - Ciudad Universitaria, C1428EGA -Buenos Aires, Argentina
  • Andrea D. Tombari Laboratorio de Contaminación Ambiental (CIT Río Negro-CONICET), Sede Atlántica, Universidad Nacional de Río Negro, Rotonda Cooperación y RP Nº 1, 8500 - Viedma, Argentina

DOI:

https://doi.org/10.47193/mafis.3612023010107

Keywords:

Marine catfish, stock, Siluriformes, migration

Abstract

Otoliths are calcium carbonate structures, deposited as aragonite, located in the inner ear of bony fish. In recent years, they have become a useful tool for the determination of fish species, trophic content, age studies, and the identification of fish stocks. The objective of this work was to describe the morphology of the three pairs of otoliths of the marine catfish Genidens barbus of Patagonian distribution. Otoliths of specimens obtained at four sampling points in the Negro River were analyzed. It was observed that otoliths presented the general morphological pattern proposed for Siluriformes, where lapilli are the largest and most robust of the three. Lapillus presented a rounded shape, a pronounced elevation in the central position, a delimited sulcus, but not very evident, without evidence of a minor sulcus. The sagitta is claviform, with an elongated conical posterior region, dorsal wings that continue as lateral expansions called basal wings, and the presence of a fissure. The asteriscus has an ear shape, a median opening, a short pointed rostrum, a poorly developed anti-rostrum and a slightly curved acoustic fossa. In this work, sagitta and asteriscus otoliths were described for the first time for the species G. barbus, thus completing the description of the three pairs.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

María D. González Dubox, Laboratorio de Contaminación Ambiental (CIT Río Negro-CONICET), Sede Atlántica, Universidad Nacional de Río Negro, Rotonda Cooperación y RP Nº 1, 8500 - Viedma, Argentina

Laura S. López Greco, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA) (UBA-CONICET) - Laboratorio de Biología de la Reproducción y el Crecimiento de Crustáceos Decápodos, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA) - Ciudad Universitaria, C1428EGA -Buenos Aires, Argentina

References

Adams LA. 1940. Some characteristic otoliths of American ostariophysi. J Morphol. 66 (3): 497-527.

Anonymous. 2000. The icthyological collection of the Zoological Museum Hamburg (ZMH). Division of Ichthyology and Herpetology, Zoological Museum Hamburg (ZMH).

Assis CA. 2005. The utricular otoliths, lapilli, of teleosts: their morphology and relevance for species identification and systematics studies. Sci Mar. 69 (2): 259-273. DOI: https://doi.org/10.3989/scimar.2005.69n2259

Assisi O, da Silva VE, Souto-Vieira D, Lozanoa P, Volpedo AV, Fabrén. N. 2020. Ecomorphological patterns in otoliths of tropical fishes: assessing trophic groups and depth strata preference by shape. Environ Biol Fishes. 103 (4): 349-361.

Avigliano E, Domanico A, Sánchez S, Volpedo AV. 2017. Otolith elemental fingerprint and scale and otolith morphometry in Prochilodus lineatus provide identification of natal nurseries. Fish Res. 186: 1-10.

Avigliano E, Martinez CF, Volpedo AV. 2014. Combined use of otolith icrochemistry and morphometry as indicators of the habitat of the silverside (Odontesthes bonariensis) in a freshwater-estuarine environment. Fish Res. 149 (1): 55-60.

Avigliano E, Miller N, De Carvalho BM, Gironde SC, Tombari A, Volpedo AV. 2020. Fin spine metals by LA-ICP-MS as a method for fish stock discrimination of Genidens barbus in anthropized estuaries. Fish Res. 230: 105625.

Avigliano E, Schenone N F, Volpedo AV, Goessler W, Cirelli AF. 2015. Heavy metals and trace elements in muscle of silverside (Odontesthes bonariensis) and water from different environments (Argentina): aquatic pollution and consumption effect approach. Sci Total Environ. 506: 102-108.

Avigliano E, Volpedo AV. 2013. Use of otolith strontium: calcium ratio as indicator of seasonal displacements of the silverside (Odontesthes bonariensis) in a freshwater-marine environment. Mar Freshw Res. 64 (8): 1-6.

Campana SE. 1999. Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar Ecol Prog Ser. 188: 263-297.

Campana SE. 2005. Otolith science entering the 21st century. Mar Freshwat Res. 56 (5): 485-495.

Campana SE, Chouinard GA, Hanson JM, Frechet A, Brattey J. 2000. Otolith elemental fingerprints as biological tracers of fish stocks. Fish Res. 46 (1-3): 343-357.

Cañás L, Stransky C, Schlickeisen J, Sampedro MP, Fariña AC. 2012. Use of the otolith shape analysis in stock identification of anglerfish (Lophius piscatorius) in the Northeast Atlantic. ICES J Mar Sci. 69 (2): 250-256. DOI: https://doi.org/10.1093/icesjms/fss006

De Carvalho BM, Corrêa MF, Volpedo A. 2014. Lapillus otoliths of the Cathoropsspixii (Spix & Agassiz, 1829) and Genidens genidens (Cuvier, 1829) (Actinopterygii-Ariidae). Acta Sci Biol Sci. 36 (3): 343-347.

Diogo R. 2014. Morphological evolution, adaptations, homoplasy, constraints, and volutionary trends. Catfishes as a case study on general phylogeny and macroevolution. Boca Ratón: Science Publishers. 502 p.

Ferguson GJ, Ward TM, Gillanders BM. 2011. Otolith shape and elemental composition: complementary tools for stock discrimination of mulloway (Argyrosomus japonicus) in southern Australia. Fish Res. 110 (1): 75-83.

Fortunato RC, González-Castro M, Galán AR, Alonso IG, Kunert C, Durà VB, Volpedo A. 2017. Identification of potential fish stocks and lifetime movement patterns of Mugil liza Valenciennes 1836 in the Southwestern Atlantic Ocean. Fish Res. 193: 164-172.

Fuchs DV. 2008. Patrones ecomorfológicos del otolito en Siluriformes Parano-Platenses [tesis de licenciatura]. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires.

Hermann TW, Duponchelle F, Castello L, Limburg KE, Pereira LA, Hauser M. 2021. Harnessing the potential for otolith microchemistry to foster the conservation of Amazonian fishes. Aquat Conserv: Mar Freshwat Ecosyst. 31 (5): 1206-1220.

James PK, Deirdre B, Rick a, Officer e m. 2014. Otolith shape analysis of blue whiting suggests a complex stock structure at their spawning grounds in the Northeast Atlantic. Fish Res. 157: 1-6. DOI: https://doi.org/10.1016/j.fishres.2014.03.009

Longmore C, Trueman CN, Neat F, O’Gorman EJ, Milton JA, Mariani S. 2011. Otolith geochemistry indicates life-long spatial population structuring in a deep-sea fish, Cory-phaenoides rupestris. Mar Ecol Prog Ser. 435: 209-224.

Maciel TR, Vaz-Dos-Santos AM, Vianna M. 2018. Can otoliths of Genidens genidens (Cuvier 1829) (Siluriformes: Ariidae) reveal differences in life strategies of males and females? Environ Biol Fish. 101: 1589-1598. DOI: https://doi.org/10.1007/s10641-018-0804-5

Maldonado-Coyac JA, Sánchez-Cárdenas R, Ramírez-Pérez JS, Guevara LA, Valdez-Núñezk P, Pérez-Centeno A, Maldonado MD. 2021. Otoliths morphology and age-record in Bagre panamensis (Siluriformes: Ariidae) inhabiting at the southeast of Gulf of California. Lat Am J Aquat Res. 49 (3): 404-417.

Martínez V, Monasterio de Gonzo G. 1991. Clave de identificación de algunos peces siluriformes en base al estudio de sus otolitos. Rev Asoc Cienc Nat Lit. 22 (2): 253-263.

Mendonça JT, Quito L, Jankowsky M, Balanin S, Garrone-Neto D. 2017. Diagnóstico da pesca do bagre-branco (Genidens barbus e G. planifrons) no litoral sudeste-sul do Brasil: subsídios para o ordenamento. Sér Relat Téc Inst Pesca. 56: 1-77.

Morales-Nin B. 1998. Daily increments in otoliths: endogenous and exogenous growth regulation. 2nd International Symposium on Fish Otolith Research and Application. Bergen.

Morales-Nin B. 2000. Review of the growth regulation processes of otolith daily increment formation. Fish Res. 46 (1-3): 53-67.

Oré-Villalba DO. 2017. Catálogo fotográfico de otolitos de peces marinos y dulceacuícolas del Perú. Bol Inst Mar Perú. 32 (2): 136-213.

Panfili J, Tomás J, Morales-Nin B. 2009. Otolith microstructure in tropical fish. En: Green BS, Mapstone BD, Carlos G, Begg GA. editores. Tropical fish otoliths: information for assessment, management and ecology. Dordrecht: Springer. p. 212-248.

Pierce GJ, Boyle PR, Diack JSW. 1991. Identification of fish otoliths and bones in feces and digestive tracts of seals. J Zool. 224 (2): 320-328.

Popper AN, Lu Z. 2000. Structure-function relationships in fish otolith organs. Fish Res. 46 (1-3): 15-25.

Popper AN, Ramcharitar J, Campana SE. 2005. Why otoliths? Insights from inner ear physiology and fisheries biology. Mar Freshwat Res. 56: 497-504.

Ruiz KLN, Estrella AD, Leónm RKM, Rojas YT. 2019. Determinación de peces presas consumidos por toninas (Tursiops truncatus) que vararon en la Isla del Carmen, Campeche. Rev Mex Biodivers. 90 (3): 1-8.

Sánchez RO, Martínez VH. 2017. Morphological variations of the three otoliths of some species of the family Loricariidae (Ostariophysi: Siluriformes). Neotrop Ichthyol. 15 (1): e160058. DOI: https://doi.org/10.1590/1982-0224-20160058

Schulz-Mirbach T, Reichenbacher B. 2006. Reconstruction of Oligocene and Neogene freshwater fish faunas - an actualistic study on cypriniform otoliths. Acta Palaeontol Pol. 51 (2): 283-304.

Tilak R. 1963. Studies on the comparative morphology of the otoliths of Indian Siluroids. Zool Anz. 173: 181-201.

Tollit DJ, Steward MJ, Thompson PM, Pierce GJ, Santos MB, Hughes S. 1997. Species and size differences in the digestion of otoliths and beaks: implications for estimates of pinniped diet composition. Can J Fish Aquat Sci. 54 (1): 105-119.

Tombari AD, Volpedo AV, Echeverría DD. 2005. Desarrollo de la sagitta en juveniles y adultos de Odontesthes argentinensis (Valenciennes, 1835) y O. bonariensis (Valenciennes, 1835) de la provincia de Buenos Aires, Argentina (Teleostei: Atheriniformes). Rev Chil Hist Nat. 78 (4): 623-633.

Tuset VM, Lombarte A, Assis CA. 2008. Otolith atlas for the western Mediterranean, north and centraleastern Atlantic. Sci Mar. 72 (1): 7-198.

Vieira AR, Neves A, Sequeira V, Paiva RB, Gordo LS. 2014. Otolith shape analysis as a tool for stock discrimination of forkbeard (Phycis phycis) in the Northeast Atlantic. Hydrobiologia. 728 (1): 103-110.

Volpedo AV, Echeverría DD. 2001. Morfología y morfometría de las sagittae de sciaenidos marinos del norte de Perú. Bol Soc Biol Concepcion. 72: 147-154.

Volpedo AV, Fuchs DV. 2010. Ecomorphological patterns of the lapilli of Paranoplatense Siluriforms (South America). Fish Res. 102: 160-165.

Volpedo AV, Thompson GA, Avigliano E. editores. 2017. Atlas de otolitos de peces de Argentina. Buenos Aires: CAFP-BACAPES. 41 p.

Volpedo AV, Vaz-Dos-Santos AM. editores. 2015. Métodos de estudios con otolitos: principios y aplicaciones. Ciudad Autónoma de Buenos Aires: INPA, CONICET-UBA. 481 p.

Published

2023-01-01

How to Cite

González Dubox, M. D., Córdoba Gironde, S., López Greco, L. S. and Tombari, A. D. (2023) “Morphology of sagitta, lapillus and asteriscus of Patagonian Genidens barbus”, Marine and Fishery Sciences (MAFIS), 36(1), pp. 109–116. doi: 10.47193/mafis.3612023010107.