A diagnosis of the artisanal fishery landings in the Colombian Caribbean coast by means of indicators

Authors

  • Camilo B. García Departamento de Biología, Universidad Nacional de Colombia, Carrera 45 Nº 26-85, Bogotá, Colombia https://orcid.org/0000-0003-0373-7916
  • Luis O. Duarte Laboratorio de Investigaciones Pesqueras Tropicales, Universidad del Magdalena, Carrera 32 Nº 22-08, Santa Marta, Colombia

DOI:

https://doi.org/10.47193/mafis.3722024010504

Keywords:

Trophic level, vulnerability, fishing gear, landings

Abstract

Landings of the artisanal fishery in the Colombian Caribbean from 2013 to 2021 were characterized by means of two indicators: the trophic level and the vulnerability to fishery landings. Indicators showed a statistically significant decreasing trend in vulnerability and trophic level, suggesting that the fishery is increasingly targeting species of low vulnerability and trophic level, thus moving down the food web. The overall pattern of indicators was not uniform in space. Incidence interaction of gears and species landed explained the trajectory of indicators at the scale of Departments. Fishing gears targeted different levels in the food web, with gillnets responsible for the bulk of landings. Compared to a previous study, the group of fish species supporting most of landings has changed towards species with lower vulnerability, i.e. resistant to fishing mortality due to their evolved life-history but still of predatory habits in general. A notable exception is Mugil incilis, a species with a low trophic level that has become third in importance of landings in the database.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Andrade CA, Barton ED. 2005. The Guajira upwelling system. Cont Shelf Res. 25: 1003-1022. DOI: http://doi.org/10.1016/j.csr.2004.12.012

Boettiger C, Lang DT, Wainwright PC. 2012. rfishbase: exploring, manipulating and visualizing FishBase data from R. J. Fish Biol. 81(6): 2030-2039. DOI: https://doi.org/10.1111/j.1095-8649.2012.03464.x

Breslow SJ, Sojka B, Barnea R, Basurto X, Carothers C, Charnley S, Coulthard S, Dolsak N, Donatuto J, Garcia-Quijano C, et al. 2016. Conceptualizing and operationalizing human wellbeing for ecosystem assessment and management. Environ Sci Policy. 66: 250-259. DOI: https://doi.org/10.1016/j.envsci.2016.06.023

Cheung WWL, Lam VWY, Sarmiento JL, Kearney K, Watson R, Zeller D, Pauly D. 2010. Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Glob Chang Biol. 16: 24-35. DOI: https://doi.org/10.1111/j.1365-2486.2009.01995.x

Cheung WWL, Pitcher TJ, Pauly D. 2005. A fuzzy logic expert system to estimate intrinsic extinction vulnerabilities of marine fishes to fishing. Biol Conserv. 124 (1): 97-111. DOI: https://doi.org/10.1016/j.biocon.2005.01.017

Cheung WWL, Watson R, Morato T, Pitcher T, Pauly D. 2007. Intrinsic vulnerability in the global fish catch. Mar Ecol Prog Ser. 333: 1-12. DOI: https://doi.org/10.3354/meps333001

Coll M, Shannon LJ, Kleisnerd KM, Juan-Jordá MJ, Bundy A, Akogluh AG, Banaru D, Boldt JL, Borges MF, Cook A, et al. 2016. Ecological indicators to capture the effects of fishing on biodiversity and conservation status of marine ecosystems. Ecol Indic. 60: 947-962. DOI: http://doi.org/10.1016/j.ecolind.2015.08.048

Duarte LO, Cuervo C, Vargas O, Gil-Manrique B, Tejeda K, De León G, E. Isaza E, Cuello F, Curiel J, Manjarrés-Martínez L, Reyes-Ardila H. 2022. Estadísticas de desembarco y esfuerzo de las pesquerías artesanales de Colombia 2021. Informe técnico. Santa Marta: Autoridad Nacional de Acuicultura y Pesca (AUNAP), Universidad del Magdalena. 169 p.

Duarte LO, Diaz-Vesga R, Cuello F, Manjarres L. 2013. Cambio estacional en la fauna acompañante de la pesqueria artisanal de arrastre de camaron del Golfo de Salamanca, Mar Caribe de Colombia. Acta Biol Colomb. 18 (2): 319-328.

Duarte LO, Manjarrés-Martínez L, De la Hoz‐M J, Cuello F, Altamar J. 2018. Estado de los principales recursos pesqueros de Colombia. Análisis de indicadores basados en tasas de captura, tallas de captura y madurez. Autoridad Nacional de Acuicultura y Pesca (AUNAP), Universidad del Magdalena.

[FAO] Food and Agriculture Organization of the United Nations. 2003. Fisheries management. 2. The ecosystem approach to fisheries. FAO Tech Guidel Responsib Fish. 4 (2). 112 p.

Froese R, Pauly D. editors. 2023. FishBase. World Wide Web electronic publication. https://www.fishbase.org.

García CB. 2010. Conocimiento tradicional: lo que los pescadores artesanales del Caribe colombiano tienen para decirnos. Pan Am J Aquat Sci. 5 (1): 78-90.

García CB, Contreras CC. 2011. Trophic levels of fish species of commercial importance in the Colombian Caribbean. Rev Biol Trop. 59 (3): 1195-1203.

García CB, Ramírez J. 2016. Perceived length at first maturity in the lane snapper, Lutjanus synagris (Linnaeus, 1758) (Perciformes: Lutjanidae), along the Caribbean coast of Colombia. Pan Am J Aquat Sci. 11 (1): 60-69.

Harrell F. 2023. Hmisc: Harrell Miscellaneous. R package version 5.0-1. https://CRAN.R-project.org/package=Hmisc.

Hollins J, Thambithurai D, Köeck B, Crespel A, Bailey DM, Cooke SJ, Lindström J, Parsons KJ, Killen SS. 2018. A physiological perspective on fisheries-induced evolution. Evol Appl. 11 (5): 561-576. DOI: https://doi.org/10.1111/eva.12597

Kleisner K, Mansour H, Pauly D. 2014. Region-based MTI: resolving geographic expansion in the Marine Trophic Index. Mar Ecol Prog Ser. 512: 185-199. DOI: https://doi.org/10.3354/meps10949

Lam VWY, Allison EH, Bell JD, Blythe J, Cheung, WWL, Frölicher TL, Gasalla MA, Sumaila UR. 2020. Climate change, tropical fisheries, and prospects for sustainable development. Nat Rev Earth Environ. 1: 440-454. DOI: https://doi.org/10.1038/s43017-020-0071-9

Lindop A, Chen T, Zylich K, Zeller D. 2015. A reconstruction of Colombia’s marine fisheries catches. Working Paper. 2015-32. Vancouver: Fisheries Centre, University of British Columbia. 16 p.

Link, JS. 2018. System-level optimal yield: increased value, less risk, improved stability, and better fisheries. Can J Fish Aquat Sci. 75: 1-16. DOI: https://doi.org/10.1139/cjfas-2017-0250

McLeod AI. 2011. Kendall: Kendall rank correlation and Mann-Kendall trend test. R package version 2.2. https://CRAN.R-project.org/package=Kendall.

Ministerio de Agricultura. 2020. Cadenas pecuarias, pesqueras y acuícolas. [accessed 2023 Jun 18]. https://sioc.minagricultura.gov.co/Acuicultura/Documentos/2020-12-30%20Cifras%20Sectoriales.pdf.

Moutopoulos DK, Libralato S, Solidoro C, Erzini K, Stergiou KI. 2014. Effect of landings data disaggregation on ecological indicators. Mar Ecol Prog Ser. 509: 27-38. DOI: https://doi.org/10.3354/meps10856

Page E, Derrick B, Coulter A, White R, Ang M, Dunstan D, Hood L, Relano V, Tsui G, van der Meer L, Pauly D. 2020. South America: updated catch reconstructions to 2018. In: Derrick M, Khalfallah V, Relano, Zeller D, Pauly D, editors. Updating to 2018 the 1950-2010 marine catch reconstructions of the Sea Around Us. Part II: the Americas and Asia-Pacific. Fish Cent Res Rep. 28 (6): 279-312.

Palomares M, Pauly D. editors. 2023. SeaLifeBase. World Wide Web electronic publication. https://www.sealifebase.ca.

Pauly D, Christensen V, Dalsgaard J, Froese R, Torres F Jr. 1998. Fishing down marine food webs. Science. 279: 860-863. DOI: https://doi.org/10.1126/science.279.5352.860

Pauly D, Palomares M. 2005. Fishing down marine food webs: it is far more pervasive than we thought. Bull Mar Sci. 76 (2): 197-211.

Pauly D, Zeller D. 2016. Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining. Nature Commun. 7: 10244. DOI: https://doi.org/10.1038/ncomms10244

Pauly D, Zeller D, Palomares M, editors. 2020. Sea around us concepts, design and data. Vancouver: Sea Around Us, University of British Columbia. [accessed 2023 Jun]. http://www.seaaroundus.org.

Ricaurte-Villota C, Bastidas-Salamanca ML. editors. 2017. Regionalización oceanográfica: una visión dinámica del Caribe. Serie de Publicaciones Especiales de INVEMAR 14. Santa Marta: Instituto de Investigaciones Marinas y Costeras (INVEMAR). 180 p.

Saavedra-Díaz LM, Rosenberg AA, Marín-López B. 2015. Social perceptions of Colombian small-scale marine fisheries conflicts: insights for management. Mar Policy. 56: 61-70. DOI: http://doi.org/10.1016/j.marpol.2014.11.026

Salazar-Pérez C, Choles-Rodríguez E, Manjarréz-Martínez L. 2020. Short-term changes in demersal fish assemblages exploited by an artisanal set gill net fishery in the Caribbean Sea (Colombia). Cien Mar. 46 (1): 39-56. DOI: https://doi.org/10.7773/cm.v46i1.3041

Stergiou KI, Moutopoulos, DK, Casal, HJA, Herzini, K. 2007. Trophic signatures of small-scale fishing gears: implications for conservation and management. Mar Ecol Prog Ser. 333: 117-128. DOI: https://doi.org/10.3354/meps333117

Vides MP, Sierra-Correa PC. editors. 2003. Atlas de paisajes costeros de Colombia. Serie Publicaciones Generales INVEMAR 16. Santa Marta: Instituto de Investigaciones Marinas y Costeras (INVEMAR). 132 p.

Wickham H. 2016. ggplot2: Elegant graphics for data analysis. New York: Springer-Verlag.

Wielgus J, Zeller D, Caicedo-Herrera D, Sumaila, R. 2010. Estimation of fisheries removals and primary economic impact of the small-scale and industrial marine fisheries in Colombia. Mar Policy. 34: 506-513. DOI: https://doi.org/10.1016/j.marpol.2009.10.006

Wilke CO. 2020. cowplot: Streamlined Plot Theme and Plot Annotations for ‘ggplot2’. R package version 1.1.1. https://CRAN.R-project.org/package=cowplot.

Downloads

Published

2023-12-19

How to Cite

García, C. B. and Duarte, L. O. (2023) “A diagnosis of the artisanal fishery landings in the Colombian Caribbean coast by means of indicators”, Marine and Fishery Sciences (MAFIS), 37(2), pp. 277–293. doi: 10.47193/mafis.3722024010504.