

ORIGINAL RESEARCH

Microfiber ingestion in *Patagonotothen krefftii* from the Namuncurá/Burdwood Bank Marine Protected Area

MARIEL OJEDA^{1,*}, PAULA BIANCONI¹, GUIDO N. RIMONDINO^{2,3}, CINTIA P. FRAYSSE⁴, CLAUDIA C. BOY⁴ and ANALÍA F. PÉREZ¹

¹Laboratorio de Invertebrados Marinos, Centro de Ciencias Naturales, Ambientales y Antropológicas (CCNAA), Universidad Maimónides (UMAI-CONICET), Hidalgo 775, C1405BCK - Ciudad Autónoma de Buenos Aires, Argentina. ²Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC-CONICET), X5000HUA - Córdoba, Argentina. ³Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA - Córdoba, Argentina. ⁴Laboratorio de Ecología, Fisiología y Evolución de Organismos Acuáticos, Centro Austral de Investigaciones Científicas (CADIC-CONICET), Ushuaia, Argentina.

ORCID Mariel Ojeda <https://orcid.org/0000-0001-7297-5454>, Paula Bianconi <https://orcid.org/0009-0005-3188-1511>, Guido N. Rimondino <https://orcid.org/0000-0003-4064-126X>, Cintia P. Fraysse <https://orcid.org/0000-0002-0254-2263>, Claudia C. Boy <https://orcid.org/0000-0002-0819-8205>, Analía F. Pérez <https://orcid.org/0000-0001-5945-7468>

*Correspondence:
marieloj@gmail.com

Received: 25 May 2025
Accepted: 14 October 2025

ISSN 2683-7595 (print)
ISSN 2683-7951 (online)

<https://ojs.inidep.edu.ar>

Journal of the Instituto Nacional de
Investigación y Desarrollo Pesquero
(INIDEP)

This work is licensed under a Creative
Commons Attribution-
NonCommercial-ShareAlike 4.0
International License

ABSTRACT. Microfibers (MFs) are an anthropogenic pollutant with a major impact on the marine environment. Due to their size, they can be ingested directly (from the environment) or indirectly (with their prey) by organisms. The aim of this study was to analyze and compare the occurrence, abundance and physicochemical characteristics of MFs present in *Patagonotothen krefftii* from the Marine Protected Area Namuncurá/Burdwood Bank (MPA N/BB) during two seasons: winter and spring. The notothenioids were obtained from the oceanographic surveys of August 2018 and December 2018. Oxidative digestions of fish gastrointestinal tracts were used to recover MFs and further determine the number per individual (MFs ind.⁻¹) and per gram of tissue (MFs g⁻¹). Each MF was characterized by total length, color, wear and discoloration, and chemical composition. In winter, *P. krefftii* presented an occurrence of 100% with values of 5.71 ± 3.19 MFs ind.⁻¹ and 1.22 ± 1.45 MFs g⁻¹, while in spring the occurrence was 85.71%, with abundances of 3.71 ± 3.30 MFs ind.⁻¹ and 0.28 ± 0.23 MFs g⁻¹, with no significant differences between seasons (Wilcoxon, $p > 0.05$). The mean size of the MFs was 0.89 mm, and blue MFs were in the majority (57.35%). Wear and discoloration were observed in 42.42% of the MFs. Cellulose MFs were the most abundant followed by polyester MFs. *P. krefftii* could be used to assess MF contamination in the N/BB MPA because it is endemic and has higher abundances of MFs than other notothenioids in the area.

Key words: Notothenioids, semi-synthetic microfibers, synthetic microfibers, cellulose, bioindicator.

Ingestión de microfibras en *Patagonotothen krefftii* del Área Marina Protegida Namuncurá/Banco Burdwood

RESUMEN. Las microfibras (MFs) son un contaminante antropogénico con gran impacto en el ambiente marino. Debido a su tamaño, pueden ser ingeridos por los organismos directamente (desde el medio ambiente) o indirectamente (con sus presas). El objetivo de este estudio fue analizar y comparar la ocurrencia, abundancia y características fisicoquímicas de MFs presentes en *Patagonotothen krefftii* del Área Marina Protegida Namuncurá/Banco Burdwood (AMP N/BB) de dos temporadas: invierno y primavera. Los nototéniidos fueron obtenidos de las campañas oceanográficas de agosto y diciembre 2018. Mediante digestiones oxidativas de los tractos gastrointestinales, se recuperaron las MFs y determinó el número por individuo (MFs ind.⁻¹) y por gramo de tejido (MFs g⁻¹). Se caracterizó a

cada MF con longitud total, color, desgaste y decoloración, y la composición química. *P. krefftii* en invierno presentó una ocurrencia del 100% y valores de $5,71 \pm 3,19$ MFs ind.⁻¹ y $1,22 \pm 1,45$ MFs g⁻¹, mientras que en primavera la ocurrencia fue 85,71%, y las abundancias de $3,71 \pm 3,30$ MFs ind.⁻¹ y $0,28 \pm 0,23$ MFs g⁻¹, sin hallarse diferencias significativas entre temporadas (Wilcoxon, $p > 0,05$). El tamaño promedio de las MFs fue 0,89 mm, las MFs azules fueron mayoritarias (57,35%). Se observó desgaste y decoloración en 42,42% de las MFs. Las MFs de celulosa fueron las más abundantes seguidas por las de poliéster. *P. krefftii* podría facilitar la evaluación de las MFs en el AMP N/BB debido a que es endémica y presenta abundancias de MFs mayores a otros nototénidos del área.

Palabras clave: Nototénidos, microfibra semi-sintéticas, microfibra sintética, celulosa, bioindicador.

INTRODUCTION

The scientific community around the world is becoming increasingly concerned about anthropogenic pollution of the marine environment. Anthropogenic particles (APs) are particles of manufactured origin present in the environment, including synthetic particles such as plastics, and semisynthetic particles such as those derived from the textile industry or tire wear (Barrows et al. 2018; Athey et al. 2020; Gaylarde et al. 2021). Smaller-sized APs (< 5 mm) are emerging contaminants that pose an increasing threat to both wildlife and human health. Furthermore, their ubiquity and persistence in the environment have raised concerns about their impact on marine biodiversity (Adams et al. 2021).

Microfibers (MFs; 0.001-5 mm) are the most abundant APs and are currently one of the main marine pollution issues (Gago et al. 2018; Suaria et al. 2020; Di Mauro et al. 2022). Due to their small size, these thread-like particles composed of synthetic (e.g. polyester) or semisynthetic materials (e.g. manufactured/modified cellulose) can be ingested by organisms of different trophic levels, either directly from the environment or indirectly through their prey (Gago et al. 2018). Ingestion of MFs has been reported in various species of marine invertebrates and vertebrates, including several fish species across different regions (e.g. Zhang et al. 2021; Sanchez-Guerrero-Hernandez et al. 2023; Ojeda et al. 2024). Experimental studies on aquatic fauna have reported a range of negative effects, in-

cluding reduced growth rates, neurotoxicity, metabolic disturbances, cytotoxicity, and endocrine, immune, and reproductive dysfunctions (de Sá et al. 2018; Barboza et al. 2020; Medriano and Bae 2022; Barboza et al. 2023). Understanding these impacts on fish is especially important, as they play a key role in ecosystems by contributing to energy and nutrient dynamics, as well as modifying habitats (Villéger et al. 2017, Marina et al. 2022). Given their ecological relevance and accessibility for sampling, fish are considered proper bioindicators of APs ingestion, and several species have been used to assess APs intake in marine environments (Alves et al. 2024; Santonicola et al. 2024).

The Burdwood Bank (BB) is a shallow seamount in the southwestern Atlantic Ocean, located 150 km east of Isla de los Estados, 200 km south of the Malvinas Islands and 1,200 km from South Georgia Island (Schejter et al. 2016; Falabella et al. 2017). This region is influenced by sub-Antarctic waters and upwelling areas, and exhibits high abundance and richness of organisms (e.g. Schejter et al. 2016; Delpiani et al. 2020; Schejter and Alballo 2021). Due to its ecological and oceanographic importance, this region was declared as the first oceanic Marine Protected Area in Argentina, ‘Namuncurá I’ (established in 2013), with the addition of the region’s deep slope, ‘Namuncurá II’, in 2018.

The genus *Patagonotothen*, which is primarily represented by *Patagonotothen guntheri* (Norman, 1937), *P. ramsayi* (Regan, 1913), *P. elegans* (Günther, 1880), and *P. cornucola* (Richardson, 1844), has the highest specific richness among the ichthyofauna of the Marine Protected Area Namuncurá/Banco Burdwood (MPA N/BB) (Delpiani et

al. 2020). Of particular interest is *P. krefftii* Balushkin and Stehmann 1993, which is regarded as a sister species to *P. ramsayi*. The geographical distribution of *P. krefftii* is limited to the BB region (Álvarez Oyarzo 2020).

Previous studies in the MPA N/BB reported higher MFs values in the water column compared to regions known as accumulation hotspots, such as the Gulf of Mexico and the Arctic Ocean (Di Mauro et al. 2022). The presence of MFs and other APs was also reported in asteroids (Cossi et al. 2021), as well as in notothenioids *P. guntheri* and *P. ramsayi* (Ojeda et al. 2024), two key species in the communities of the MPA N/BB (Delpiani et al. 2020). Given the unique fish species restricted to the BB area, the objective of this study was to analyze the occurrence, abundance, and chemical nature of MFs found in the gastrointestinal tract of *P. krefftii* in two seasons (winter and spring) at the MPA N/BB.

MATERIALS AND METHODS

Study area and sampling

Samples were obtained in the MPA N/BB (54° S, 55° S, 56° W- 62° W) from oceanographic surveys conducted in August (austral winter) and November (austral spring) of 2018 on the vessels ARA ‘Puerto Deseado’ and ‘BIP Victor Angelescu’, respectively (Figure 1). A total of 50 fishes were collected using a demersal bottom trawl pilot net in August (S1: $54^{\circ} 32' 26''$ S, $59^{\circ} 24' 46''$ W, 133 m, N = 20) and November (S2: $54^{\circ} 19' 20''$ S, $60^{\circ} 24' 14''$ W, 118 m, N = 30) for APs determination. Fish were measured and dissected. The gastrointestinal tract of each specimen was meticulously removed and preserved individually in aluminum foil envelopes at -20° C until processing. Specimens were also preserved at -20° C and subsequently identified by molecular genetic methods (Álvarez Oyarzo 2020). Following genetic identification, 14 specimens of *P.*

krefftii were selected to study (August N = 7, total length range: 210-302 mm; and November N = 7, total length range: 220-282 mm).

Quality assurance/quality control

All materials and equipment used for the extraction of MFs were thoroughly cleaned before processing each sample, including washing and rinsing with Milli-Q water, and then allowed to dry beneath aluminum foil. Laboratory materials were inspected under a stereomicroscope to confirm the absence of residual contamination. Glassware, white cotton laboratory coats, sterile Petri dishes and nitrile gloves were utilized. Prior to processing each sample, laboratory benches were meticulously cleansed with 96% ethanol. Furthermore, to minimize the potential for cross-contamination, laboratory personnel movement was restricted. Every time a set of seven samples was processed simultaneously, a procedural blank (control without a fish gastrointestinal tract) was included. Following filtration, filter papers were promptly transferred to a covered Petri dish. At all processing stages, a clean Petri dish was placed adjacent to the samples and then examined in order to monitor for airborne contamination.

Microfibers isolation

The extraction method employed for MFs was a modification of Pérez et al. (2020). Aluminum foil was removed from each individually preserved sample, after which digestive tracts were placed in Petri dishes and weighed immediately while still frozen using an electronic precision balance (± 0.001 g). Digestive tracts of each specimen were then placed in glass bottles with H_2O_2 (30% v v⁻¹, 1:10 w v⁻¹) and incubated at 55° C for 72 h in darkness. Subsequently, bottles were shaken mechanically for 1 h at room temperature. Finally, each digested sample was incubated at 60° C for 30 min followed by vacuum filtering through a filter paper of 22 μ m pore size (Whatman no 541).

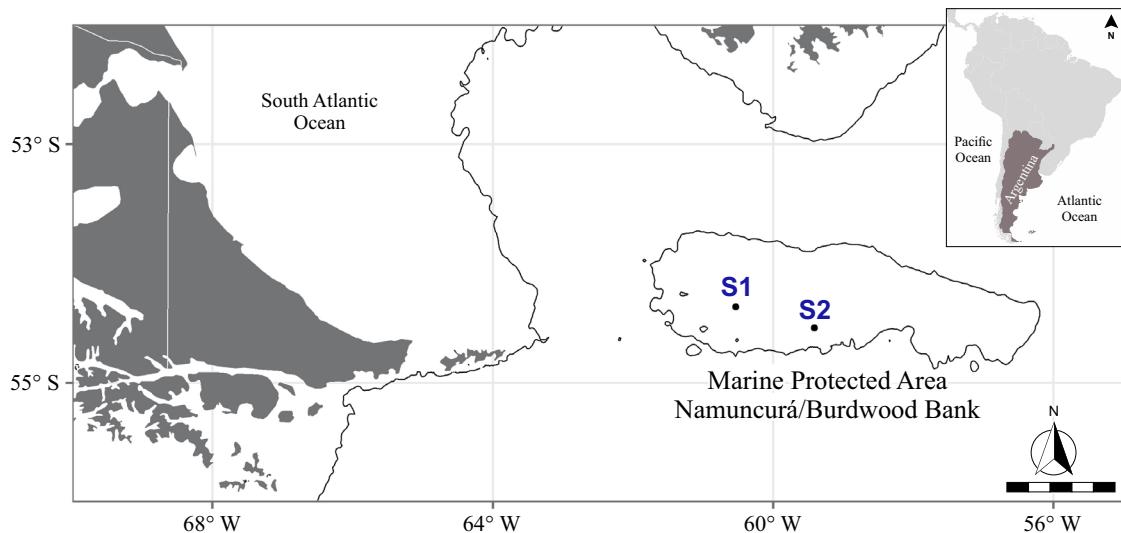


Figure 1. Sampling sites in the Marine Protected Area Namuncurá/Burdwood Bank during 2018. Circles represent sampling stations. S1: August, 118 m ($54^{\circ} 22' 34''$ S, $60^{\circ} 54' 15''$ W); S2: November, 133 m ($54^{\circ} 32' 26''$ S, $59^{\circ} 24' 46''$ W).

Identification and quantification of microfibers

Filters were observed under a stereomicroscope NIKON SMZ 800, always in covered glass Petri dishes to prevent air contamination. The MFs were imaged using a digital camera attached to the stereomicroscope. The MFs were subsequently enumerated and classified according to their color and the presence of deterioration, including wear and discoloration (Hidalgo-Ruiz et al. 2012; Vinci et al. 2021). The number of MFs in the samples was adjusted when similar MFs were found in control or procedural blanks (two microfibers were discarded from one individual; supplementary material, Table S1). The maximum length of each MF was measured using ImageJ software. For each sample, the total number of MFs per individual (MFs ind.⁻¹) and per gram of digestive tract (MFs g⁻¹) was quantified.

A total of 72.72% of the observed MFs were analyzed using Fourier Transform Infrared (FTIR) spectroscopy. The remaining particles could not be analyzed due to methodological constraints, such as instrumental and inherent procedural limitations. The chemical composition of MFs was assessed

using a Nicolet iN10 infrared microscope, provided with a highly sensitive liquid-nitrogen-cooled mercury cadmium telluride detector. All spectra were recorded in transmittance mode with a resolution of 8 cm^{-1} in the range of 675 to $4,000\text{ cm}^{-1}$ and compared against HR Nicolet and Hummel Polymer libraries available in the Omnic 9.11.721 software, and a personal library created from spectra of pure polymers obtained under the same conditions.

Data analysis

Spring-winter variation in MFs per individual (MFs ind.⁻¹) and per gram of digestive tract (MFs g⁻¹) was analyzed using the non-parametric Mann-Whitney Wilcoxon (WMW). This analysis was conducted subsequent to the examination of normality (Shapiro-Wilk test) and homoscedasticity of variance (Levene's test) assumptions, and there was no evidence of rejection of the null hypotheses. Lengths of MFs for each season were analyzed using a class frequency Fisher's exact test. Statistical significance levels were set at 0.05. The statistical analysis of the data was conducted using the RStudio version 4.2.1 software.

RESULTS

A total of 66 MFs were recovered from the gastrointestinal tract of fish. *Patagonotothen krefftii* from winter showed an occurrence of 100% (40 total MFs) and mean values of 5.71 ± 3.19 MFs ind.^{-1} and 1.22 ± 1.45 MFs g^{-1} , while *P. krefftii* from spring presented an occurrence of 85.71% (26 total MFs) and mean abundances of 3.71 ± 3.30 MFs ind.^{-1} and 0.28 ± 0.23 MFs g^{-1} . There were no significant differences found between seasons (MFs ind.^{-1} : WMW, $W = 13$, $p = 0.151$; MFs g^{-1} : WMW, $W = 37$, $p = 0.128$) (Figure 2 A and B).

The mean length of MFs was 1.00 ± 0.95 mm in winter fish and 0.88 ± 0.77 mm in spring fish. The majority of MFs were found to be less than 1.25 mm during the winter and spring seasons, with percentages of 79.49% and 76.00%, respectively. The class frequency of MFs did not show signif-

icant differences between seasons (Fisher's Exact Test, $p = 0.116$) (Figure 3; supplementary material, Table S1).

The most prevalent color of MFs was blue (winter: 65.00%, spring: 50.00%; Figure 4 A and B; supplementary material, Table S1), followed by black (winter: 27.50%, spring: 26.90%, Figure 4 A and C; supplementary material, Table S1). Red MFs were found in lower proportions (winter: 7.50%, spring: 11.50%, Figure 4 A and D; supplementary material, Table S1) and transparent MFs (11.50%, Figure 4 A and E; supplementary material, Table S1) were only observed in spring fish. The characteristic of wear (Figure 4 B) was observed in 17.50% and 38.46% of the MFs in winter and spring, respectively, and discoloration (Figure 4 D) was found in 15.00% (winter) and 19.23% (spring) of the MFs.

The MFs analyzed by infrared microscopy found in *P. krefftii* from both seasons were semi-synthetic (71.00% of MFs) and synthetic (29.00% of

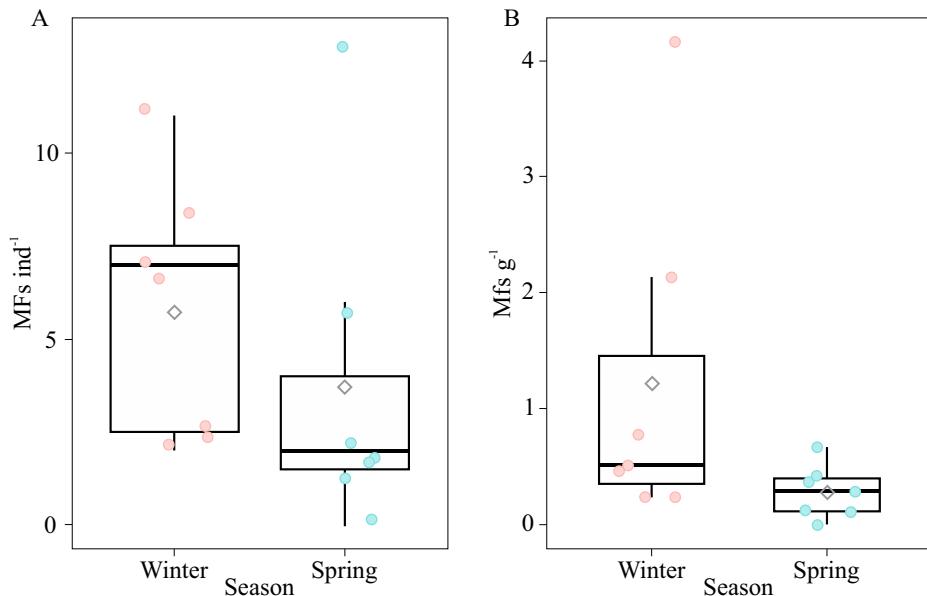


Figure 2. Abundance of microfibers found in digestive tracts of *Patagonotothen krefftii* during two seasons (winter and spring) of 2018 in the Marine Protected Area Namuncurá/Burdwood Bank. A) Total number of microfibers per individual (MFs ind.^{-1}). B) Total number of microfibers per gram of digestive tract (MFs g^{-1}). Box plots show the mean (white diamond), median (solid line), first and third quartiles (boxes), minimum and maximum values (whiskers) and values of MFs found in individuals in pink dots for winter and light blue for spring.

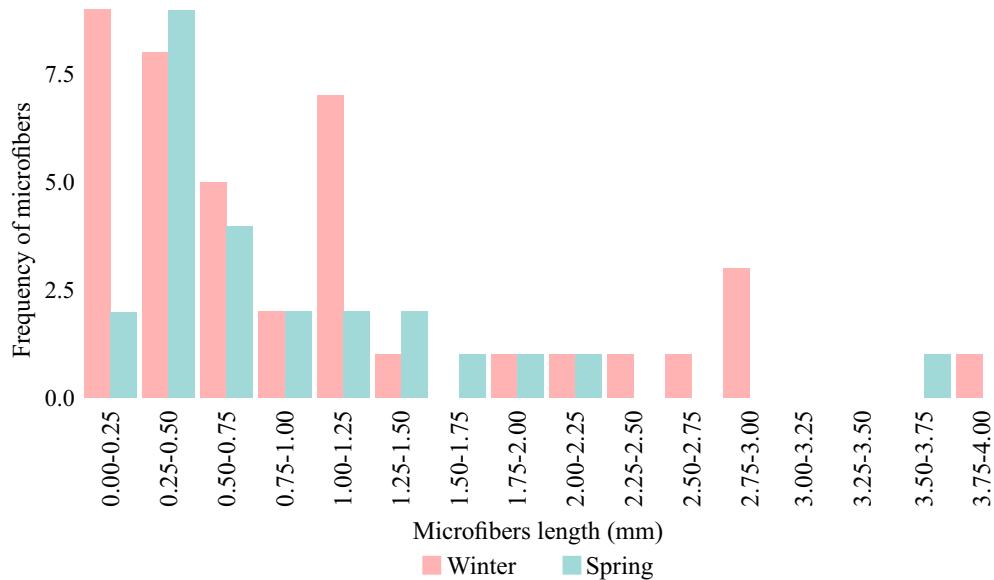


Figure 3. Size distribution of microfibers found in digestive tracts of *Patagonotothen krefftii* during two seasons (winter and spring) of 2018 in the Marine Protected Area Namuncurá/Burdwood Bank.

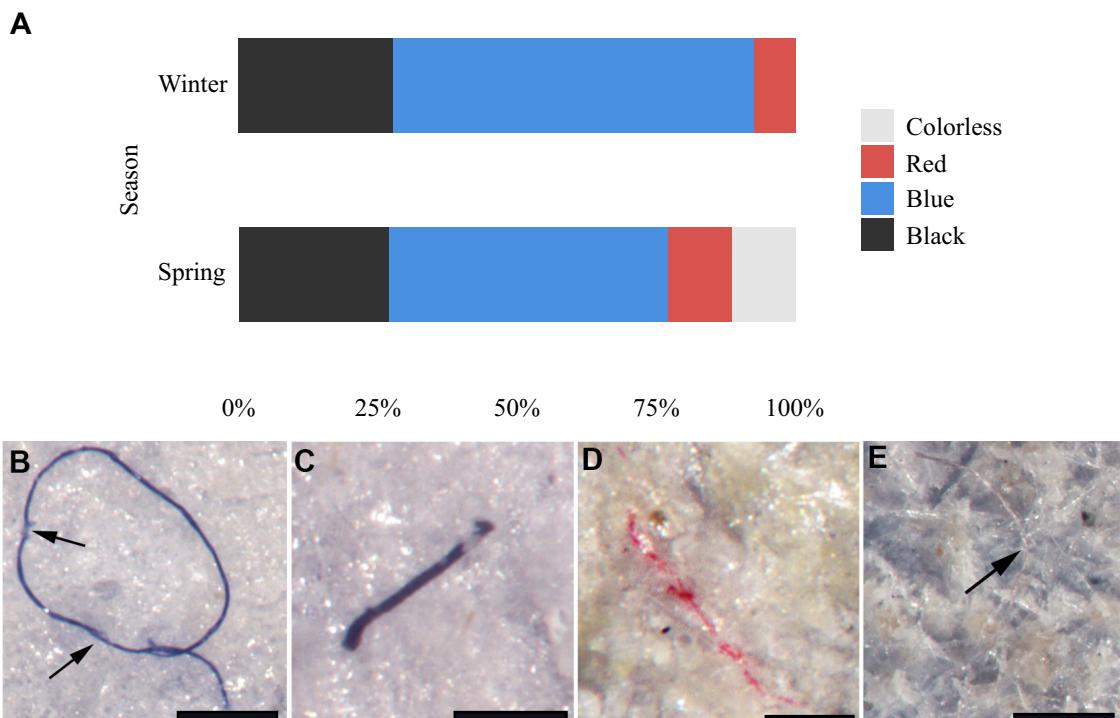


Figure 4. A) Proportion (%) of microfibers colors found in digestive tracts of *Patagonotothen krefftii* during two seasons (winter and spring) of 2018 in the Marine Protected Area Namuncurá/Burdwood Bank. B) Blue microfiber, arrow indicates signs of wear. C) Black microfiber. D) Red microfiber with signs of discoloration. E) Transparent microfiber (arrow). Escala: 150 µm.

MFs). Semi-synthetic MFs were predominantly cellulose (winter: 75.00%, spring: 54.00%) and cellulose-polyamide blend (winter: 8.33%, spring: 4.17%). Synthetic MFs of polyester were found in fish from both seasons (8.33% in winter and 37.50% in spring). Other synthetic MFs, such as polyacrylonitrile (PAN; 4.17%) and polypropylene (4.17%), were identified in winter fish, while polyethylene (4.17%) was found in spring fish (Figure 5; supplementary material, Table S1).

DISCUSSION

The notothenioid *P. krefftii* at MPA N/BB has a high frequency of occurrence of MFs, which is consistent with findings reported for MFs in other marine fishes from the South Atlantic and other regions. *Patagonotothen ramsayi* and *P. guntheri* from MPA N/BB had high occurrences of APs, with MFs being the majority (71.2% and 87%, respectively; Ojeda et al. 2024). Concurrently, in the estuary of Bahía Blanca and Río de la Plata (Argentina), *Micropogonias furnieri* (Desmarest, 1823) exhibits 80% and 100% occurrences of APs,

respectively, with predominance in MFs (Arias et al. 2019; Mandiola et al. 2022). Globally, although with variations, numerous studies report high frequencies (68-100%) of MFs occurrences in fish digestive tracts (Pozo et al. 2017; Clere et al. 2022; Santonicola et al. 2024; Santonicola et al. 2025).

Although numerous studies have reported the presence of MFs in fish digestive tracts across different marine regions, the lack of standardized reporting criteria limits the extent to which their results can be directly compared with ours. This variability underscores the need for harmonized methodologies to enable more robust inter-study comparisons. Some studies report MFs per individual (e.g. Arias et al. 2019), while others report only per gram (e.g. Lopes et al. 2023). In studies that encompass both forms of reporting, values of MFs per gram are occasionally presented exclusively for individuals with MFs, omitting the total number of organisms studied (e.g. Santonicola et al. 2025). Within this framework, our results show that the abundance of MFs in *P. krefftii* was high in both seasons, even higher than those found in other notothenioids inhabiting the MPA N/BB (*P. ramsayi*: 2.80 ± 2.32 MFs ind. $^{-1}$ and *P. guntheri*: 2.18 ± 1.89 MFs ind. $^{-1}$; Ojeda et al. 2024). The species

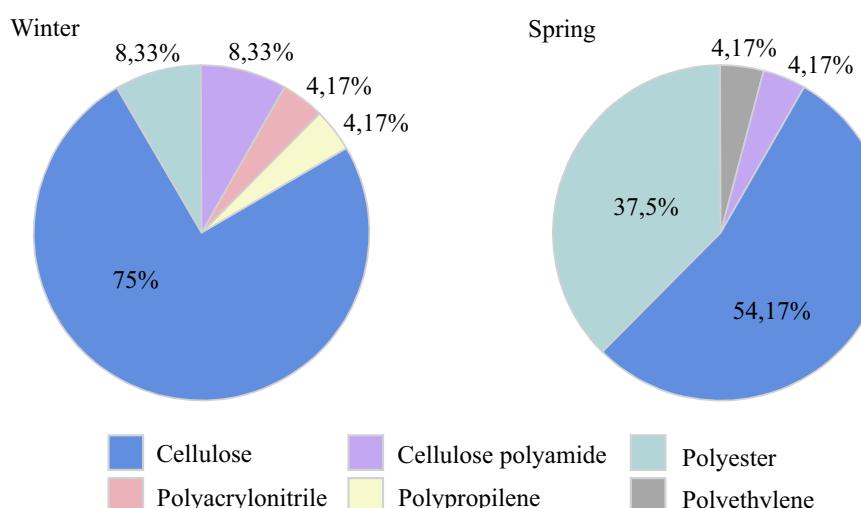


Figure 5. Chemical composition of microfibers found in digestive tracts of *Patagonotothen krefftii* during two seasons (winter and spring) of 2018 in the Marine Protected Area Namuncurá/Burdwood Bank.

of genus *Patagonotothen* play a key role in the trophic ecology of the southern Atlantic Ocean. These species consume a variety of benthic and supra-benthic invertebrates (Laptikhovsky 2004; Hüne and Vega 2016; Covatti Ale et al. 2022; Fischer et al. 2022) and serve as prey for a wide variety of fishes, mammals and seabirds (Brickle et al. 2006; Ricciardelli et al. 2013; Hüne and Vega 2016). Feeding habits of *P. krefftii* are unknown; however, it is assumed to exhibit generalist feeding behavior, similar to its sister species *P. ramsayi* (Álvarez Oyarzo 2020) and other members of the genus *Patagonotothen*. Fishes with generalist habits and prey variability are highly susceptible to having greater AP abundances, particularly MFs (Peters et al. 2017; Ferreira et al. 2019; Scacco et al. 2022; Ojeda et al. 2024), due to trophic transference. On the other hand, direct consumption of particles is feasible (Scacco et al. 2022). The MFs are the most abundant APs in the oceans (Cesa et al. 2017), particularly in the MPA N/BB, where a high abundance of MFs was documented, uniformly distributed throughout the water column (17.4 ± 12.6 MFs L⁻¹; Di Mauro et al. 2022).

The distribution of species belonging to the genus *Patagonotothen* extends across a considerable region of the southwestern Atlantic Ocean (Eastman and Eakin 2000). *Patagonotothen krefftii* records are limited to the MPA N/BB (Álvarez Oyarzo, 2020). Therefore, the APs acquired directly or indirectly could serve as indicators of the pollution level within the MPA N/BB.

The abundances of MFs in fish did not show significant differences between seasons. During winter, the BB water experiences intense convection that facilitates the transport of deep water to the upper layers (Matano et al. 2019). This process would favor the resuspension and availability of MFs in the water column. During the warm season, restratification has been shown to reduce mixing and increase the residence time of particles, as indicated by the formation of a density gradient (Matano et al. 2019), which could also lead to the retention of MFs. Previous studies conducted at the MPA N/

BB on APs ingestion in *P. guntheri* and *P. ramsayi* (Ojeda et al. 2024) are in concordance with our findings in *P. krefftii*. Blue, black and red particles were predominant, with similar percentages. In addition, Di Mauro et al. (2022) found that the majority of the MFs in the water column were blue and black for the same region and seasons. Several authors in regions far from our study area have also reported the predominance of these colors in MFs (Zhang et al. 2021; Santonicola et al. 2024). There is evidence that blue MFs tend to be dominant in megafauna globally, both freshwater and marine (Gago et al. 2018; Macieira et al. 2021; Lopes et al. 2023; Alves et al. 2024) which can be attributed to its global use in denim jeans and its wear during washing (Athey et al. 2020). Besides, fish in marine environments tend to select APs with blue and black colors more frequently than other colors, suggesting that blue APs may be confused by fish due to similarly colored prey (Scacco et al. 2022), and also suggesting that other colors tend to be less stable once they enter the gastrointestinal tract of fish (Zazouli et al. 2022). The length of MFs varied in relation to their size, although 54% were shorter than 0.65 mm, which is consistent with what has been documented for other notothenioid species (Ojeda et al. 2024) and water column (Di Mauro et al. 2022) in the MPA N/BB. The relatively high proportion of aged (42% showed signs of wear and discoloration) and short MFs ($52\% < 0.65$ mm) found in our study, supports the idea that much of the MFs in the MPA N/BB might be imported and driven by the Antarctic Circumpolar Current and even retained in the area for a long time (Matano et al. 2019; Di Mauro et al. 2022).

The chemical composition of the MFs in *P. krefftii* from both seasons is dominated by cellulose, as found in *P. ramsayi* and *P. guntheri* (Ojeda et al. 2024) and in sea stars *Henricia obesa* (Sladen, 1889) and *Odontaster penicillatus* (Philippi, 1870) from MPA N/BB (Cossi et al. 2021). Recent studies from other regions also found high proportions of cellulosic MFs. Natural and regenerated cellulosic MFs were found in proportions ranging

from 55% to 72% in commercial species from the Tyrrhenian Sea (Santonicola et al. 2024), 78-82% in species from the Adriatic Sea (Santonicola et al. 2025), and 67.7-72.7% in fish from the southeastern Pacific and Antarctic coasts (Ergas et al. 2023). MFs originate from textile industry, industrial and domestic washing, and enter the oceans through waterways (Singh et al. 2020; Suaria et al. 2020) as well as atmospheric propagation (Xiao et al. 2023). Among synthetic polymers found, polyester stands out and is one of the most abundant types of APs in marine environments (Kanhai et al. 2016; Bessa et al. 2018) and is also found in high proportion in various fish (Bessa et al. 2018; Santonicola et al. 2024, 2025). The variety of chemical composition found in winter and of compounds with densities higher than water, such as polyamide and acrylic blends, is consistent with what was found in the previous study by Ojeda et al. (2024), where *P. ramsayi* from winter season presents a greater variety of polymers. The density of APs in the water column determines their bioavailability (Barletta et al. 2020). Stratification in the warm season could influence a lower variety of polymers in the water column, while in winter, strong convection would increase the availability of different density particles. This could be ingested indirectly by a variety of prey or, through the accidental ingestion of particles in water or sediments (Ferreira et al. 2019; Scacco et al. 2022; Ojeda et al. 2024).

Compounds found in notothenioids such as polyacrylonitrile (PAN), polyurethane and resins are considered polymers of higher toxicity (Yuan et al. 2022). Numerous studies in fish have detailed the effects of APs in fish and the risk to human health (e.g. Barboza et al. 2018, Barboza et al. 2020; Matias et al. 2024). Fish act as the main pathway for transporting APs to higher trophic levels, posing a potential threat to the entire ecosystem (Yuan et al. 2022). Findings of the present study suggest that species such as *P. krefftii* are highly exposed to contamination by MFs, reflecting the global dispersion of APs and the potential for transfer of toxic compounds through the food web, being a risk to

biota and human health. *Patagonotothen krefftii* has the potential to serve as an indicator species for assessing the presence of MFs in the MPA N/BB, given its endemic status and its higher values of MF abundance than other notothenioid species present in the area.

ACKNOWLEDGEMENTS

We are grateful to the crew of the RV 'Puerto Deseado' and the 'BIP Victor Angelescu' for their support during the sampling procedures. We also thank Santiago Castillo for his technical assistance during the cruise and Dr. Santiago Ceballos for the species identification information. We are in debt to Virginia García Alonso for providing us with the R script to obtain the Burwood Bank map. This work is contribution no 94 of the Marine Protected Area Namuncurá (National Law 26.875, Argentina). This study was funded by the Fundación Científica Felipe Fiorellino, Universidad Maimónides, Agencia Nacional de Promoción de la Investigación, el Desarrollo Tecnológico y la Innovación (PICT-2021-GRF-TI-00664) and Consejo Nacional de Investigaciones Científicas y Técnicas.

Author contributions

Mariel Ojeda: conceptualization; methodology; formal analysis; investigation; writing-original draft; visualization; writing-review and editing. Paula Bianconi: methodology; formal analysis; writing-review and editing. Guido N. Rimondino: methodology; formal analysis; investigation; writing-review and editing. Cintia P. Fraysse: writing- review and editing. Claudia C. Boy: conceptualization; investigation; resources; supervision; writing-review and editing. Analía F. Pérez: conceptualization; methodology; investigation; resources; writing-original draft; writing-review and editing; supervision; project administration, funding acquisition.

REFERENCES

ADAMS JK, DEAN BY, ATHEY SN, JANTUNEN LM, BERNSTEIN S, STERN G, DIAMOND ML, FINKELSTEIN SA. 2021. Anthropogenic particles (including microfibers and microplastics) in marine sediments of the Canadian Arctic. *Sci Total Environ.* 784: 147155. DOI: <https://doi.org/10.1016/j.scitotenv.2021.147155>

ÁLVAREZ OYARZO YP. 2020. Análisis filogenómico de *Patagonotothen krefftii* y *Patagonotothen ramsayi* en el Área Marina Protegida Namuncurá-Banco Burdwood [thesis]. Ushuaia: Universidad Nacional de Tierra del Fuego, Antártida e Islas del Atlántico Sur. 67 p.

ALVES NM, RODRIGUEZ J, DI MAURO R, RODRÍGUEZ JS, MALDONADO D, BRAVERMAN MS, TEMPERONI B, DIAZ MV. 2024. Like noodles in a soup: anthropogenic microfibers are being ingested by juvenile fish in nursery grounds of the Southwestern Atlantic Ocean. *Mar Pollut Bull.* 202: 116368. DOI: <https://doi.org/10.1016/j.marpolbul.2024.116368>

ARIAS AH, RONDA AC, OLIVA AL, MARCOVECCHIO JE. 2019. Evidence of microplastic ingestion by fish from the Bahía Blanca estuary in Argentina, South America. *Bull Environ Contam Toxicol.* 102: 750-756. DOI: <https://doi.org/10.1007/s00128-019-02604-2>

ATHHEY SN, ADAMS JK, ERDLE LM, JANTUNEN LM, HELM PA, FINKELSTEIN SA, DIAMOND ML. 2020. The widespread environmental footprint of indigo denim microfibers from blue jeans. *Environ Sci Technol Lett.* 7 (11): 840-847. DOI: <https://doi.org/10.1021/acs.estlett.0c00498>

BARBOZA LGA, DICK VETHAAK A, LAVORANTE BRBO, LUNDEBYE AK, GUILHERMINO L. 2018. Marine microplastic debris: an emerging issue for food security, food safety and human health. *Mar Pollut Bull.* 133: 336-348. DOI: <https://doi.org/10.1016/j.marpolbul.2018.05.047>

BARBOZA LGA, LOPES C, OLIVEIRA P, BESSA F, OTERO V, HENRIQUES B, RAIMUNDO J, CAETANO M, VALE C, GUILHERMINO L. 2020. Microplastics in wild fish from North East Atlantic Ocean and its potential for causing neurotoxic effects, lipid oxidative damage, and human health risks associated with ingestion exposure. *Sci Total Environ.* 717: 134625. DOI: <https://doi.org/10.1016/j.scitotenv.2019.134625>

BARBOZA LGA, OTERO XL, FERNÁNDEZ E V, VIEIRA LR, FERNANDES JO, CUNHA SC, GUILHERMINO L. 2023. Are microplastics contributing to pollution-induced neurotoxicity? A pilot study with wild fish in a real scenario. *Heliyon.* 9 (1): e13070. DOI: <https://doi.org/10.1016/j.heliyon.2023.e13070>

BARLETTA M, COSTA MF, DANTAS DV. 2020. Ecology of microplastics contamination within food webs of estuarine and coastal ecosystems. *MethodsX.* 7: 100861. DOI: <https://doi.org/10.1016/j.mex.2020.100861>

BARROWS APW, CATHEY SE, PETERSEN CW. 2018. Marine environment microfiber contamination: global patterns and the diversity of microparticle origins. *Environ Pollut.* 237: 275-284. DOI: <https://doi.org/10.1016/j.envpol.2018.02.062>

BESSA F, BARRÍA P, NETO JM, FRIAS JGPL, OTERO V, SOBRAL P, MARQUES JC. 2018. Occurrence of microplastics in commercial fish from a natural estuarine environment. *Mar Pollut Bull.* 128: 575-584. DOI: <https://doi.org/10.1016/j.marpolbul.2018.01.044>

BRICKLE P, SHCHERBICH Z, LAPTIKHOVSKY V. 2005. Aspects of the biology of the Falkland's rockcod *Patagonotothen ramsayi* (Regan, 1913) on the southern Patagonian shelf. *Scientific Report.* 81.

CLERE IK, AHMED F, REMOTO PIJG, FRASER-MILLER SJ, GORDON KC, KOMYAKOVA V, ALLAN BJM. 2022. Quantification and characterization of microplastics in commercial fish from southern New Zealand. *Mar Pollut Bull.* 184: 114121. DOI: <https://doi.org/10.1016/j.marpolbul.2022.114121>

COSI PF, OJEDA M, CHIESA IL, RIMONDINO GN, FRAYSSE C, CALCAGNO J, PÉREZ AF. 2021. First

evidence of microplastics in the Marine Protected Area Namuncurá at Burdwood Bank, Argentina: a study on *Henricia obesa* and *Odontaster penicillatus* (Echinodermata: Asteroidea). Polar Biol. 44 (12): 2277-2287. DOI: <https://doi.org/10.1007/s00300-021-02959-5>

COVATTI ALE M, FISCHER L, DELI ANTONI M, DIAZ DE ASTARLOA JM, DELPIANI G. 2022. Trophic ecology of the yellowfin notothen, *Patagonotothen guntheri* (Norman, 1937) at the Marine Protected Area Namuncurá-Burdwood Bank, Argentina. Polar Biol. 45 (4): 549-558. DOI: <https://doi.org/10.1007/S00300-022-03011-w>

DE SÁ LC, OLIVEIRA M, RIBEIRO F, ROCHA TL, FUTTER MN. 2018. Studies of the effects of microplastics on aquatic organisms: What do we know and where should we focus our efforts in the future? Sci Total Environ. 645: 1029-1039. DOI: <https://doi.org/10.1016/j.scitotenv.2018.07.207>

DELPIANI SM, BRUNO DO, VAZQUEZ DM, LLOMPART F, DELPIANI GE, FERNÁNDEZ DA, ROSSO JJ, MABRAGAÑA E, DÍAZ DE ASTARLOA JM. 2020. Structure and distribution of fish assemblages at Burdwood Bank, the first Sub-Antarctic Marine Protected Area “Namuncurá” in Argentina (Southwestern Atlantic Ocean). Polar Biol. 43 (11): 1783-1793. DOI: <https://doi.org/10.1007/S00300-020-02744-w>

DI MAURO R, CASTILLO S, PÉREZ AF, IACHETTI CM, SILVA L, TOMBA JP, CHIESA IL. 2022. Anthropogenic microfibers are highly abundant at the Burdwood Bank seamount, a protected sub-Antarctic environment in the Southwestern Atlantic Ocean. Environ Pollut. 306: 119364. DOI: <https://doi.org/10.1016/J.envpol.2022.119364>

EASTMAN JT, EAKIN RR. 2000. An updated species list for notothenioid fish (Perciformes; Notothenioidei), with comments on Antarctic species. Arch Fish Mar Res. 48 (1): 11-20.

ERGAS M, FIGUEROA D, PASCHKE K, URBINA MA, NAVARRO JM, VARGAS-CHACOFF L. 2023. Cellulosic and microplastic fibers in the Antarctic fish *Harpagifer antarcticus* and Sub-Antarctic *Harpagifer bispinus*. Mar Pollut Bull. 194 (B): 115380. DOI: <https://doi.org/10.1016/j.marpolbul.2023.115380>

FALABELLA V, editor. 2017. Área marina protegida Namuncurá/Banco Burdwood. Contribuciones para la línea de base y el plan de manejo. Buenos Aires: Jefatura de Gabinete de Ministros. 76 p. https://www.argentina.gob.ar/sites/default/files/banco_burdwood.pdf.

FERREIRA GVB, BARLETTA M, LIMA ARA. 2019. Use of estuarine resources by top predator fishes. How do ecological patterns affect rates of contamination by microplastics? Sci Total Environ. 655: 292-304. DOI: <https://doi.org/10.1016/j.scitotenv.2018.11.229>

FISCHER L, COVATTI ALE M, DELI ANTONI M, DÍAZ DE ASTARLOA JM, DELPIANI G. 2022. Feeding ecology of the longtail southern cod, *Patagonotothen ramsayi* (Regan, 1913) (Notothenioidei) in the Marine Protected Area Namuncurá-Burdwood Bank, Argentina. Polar Biol. 45 (9): 1483-1494. DOI: <https://doi.org/10.1007/S00300-022-03082-9>

GAGO J, CARRETERO O, FILGUEIRAS AV, VIÑAS L. 2018. Synthetic microfibers in the marine environment: a review on their occurrence in seawater and sediments. Mar Pollut Bull. 127: 365-376. DOI: <https://doi.org/10.1016/j.marpolbul.2017.11.070>

GAYLARDE C, BAPTISTA-NETO JA, DA FONSECA EM. 2021. Plastic microfibre pollution: how important is clothes' laundering? Heliyon. 7 (5): e07105. DOI: <https://doi.org/10.1016/j.heliyon.2021.e07105>

HIDALGO-RUZ V, GUTOW L, THOMPSON RC, THIEL M. 2012. Microplastics in the marine environment: a review of the methods used for identification and quantification. Environ Sci Technol. 46 (6): 3060-3075. DOI: <https://doi.org/10.1021/es2031505>

HÜNE M, VEGA R. 2016. Feeding habits in two sympatric species of Notothenioidei, *Patagonotothen cornucola* and *Harpagifer bispinus*, in the Chilean Patagonian channels and fjords. Po-

lar Biol. 39 (12): 2253-2262. DOI: <https://doi.org/10.1007/s00300-016-1892-3>

LEPTIKHOVSKY VV. 2004. A comparative study of diet in three sympatric populations of Patagonotothen species (Pisces: Nototheniidae). Polar Biol. 27 (4): 202-205. DOI: <https://doi.org/10.1007/s00300-003-0573-1>

LOPES C, AMBROSINO AC, FIGUEIREDO C, CAETANO M, SANTOS MM, GARRIDO S, RAIMUNDO J. 2023. Microplastic distribution in different tissues of small pelagic fish of the Northeast Atlantic Ocean. Sci Total Environ. 901: 166050. DOI: <https://doi.org/10.1016/j.scitotenv.2023.166050>

MACIEIRA RM, OLIVEIRA LAS, CARDOZO-FERREIRA GC, PIMENTEL CR, ANDRADES R, GASPARINI JL, SARTI F, CHELAZZI D, CINCINELLI A, GOMES LC, et al. 2021. Microplastic and artificial cellulose microfibers ingestion by reef fishes in the Guarapari Islands, southwestern Atlantic. Mar Pollut Bull. 167: 112371. DOI: <https://doi.org/10.1016/j.marpolbul.2021.112371>

MANDIOLA MA, BAGNATO R, GANA JCM, DE LEÓN MC, DASSIS M, ALBAREDA D, DENUNCIO P. 2022. Primeros registros de la presencia de meso y microplásticos en el tracto digestivo de un importante pez comercial del Sistema del Estuario del Río de la Plata (Océano Atlántico Sudoccidental). Mar Fish Sci. 35 (1): 103-113. DOI: <https://doi.org/10.47193/mafs.3512022010101>

MARINA TI, SCHLOSS IR, LOVRICH GA, BOY CC, BRUNO DO, CAPITANIO FL, DELPIANI SM, ASTARLOA JMD DE, FRAYSSE C, GARCÍA ALONSO VA, et al. 2024. Complex network of trophic interactions in Burdwood Bank, a sub-Antarctic oceanic marine protected area. Mar Ecol Prog Ser. 736: 1-18. DOI: <https://doi.org/10.3354/meps14600>

MATANO RP, PALMA ED, COMBES V. 2019. The Burdwood bank circulation. J Geophys Res Oceans. 124 (10): 6904-6926. DOI: <https://doi.org/10.1029/2019JC015001>

MATIAS RS, MONTEIRO M, SOUSA V, PINHO B, GUIHERMINO L, VALENTE LMP, GOMES S. 2024. A multiple biomarker approach to understand the effects of microplastics on the health status of European seabass farmed in earthen ponds on the NE Atlantic coast. Environ Res. 263. DOI: <https://doi.org/10.1016/j.envres.2024.120208>

MEDRIANO CA, BAE S. 2022. Acute exposure to microplastics induces metabolic disturbances and gut dysbiosis in adult zebrafish (*Danio rerio*). Ecotoxicol Environ Saf. 245: 114125. DOI: <https://doi.org/10.1016/j.ecoenv.2022.114125>

OJEDA M, RIMONDINO GN, FRAYSSE CP, COSSI PF, BOY CC, PÉREZ AF. 2024. Microplastic ingestion in key fish species of food webs in the Southwest Atlantic (Marine Protected Area Namuncurá/Burdwood Bank). Aquatic Toxicol. 267: 106827. DOI: <https://doi.org/10.1016/j.aquatox.2023.106827>

PÉREZ AF, OJEDA M, RIMONDINO GN, CHIESA IL, DI MAURO R, BOY CC, CALCAGNO JA. 2020. First report of microplastics presence in the mussel *Mytilus chilensis* from Ushuaia Bay (Beagle Channel, Tierra del Fuego, Argentina). Mar Pollut Bull. 161: 111573. DOI: <https://doi.org/10.1016/j.marpolbul.2020.111573>

PETERS CA, THOMAS PA, RIEPER KB, BRATTON SP. 2017. Foraging preferences influence microplastic ingestion by six marine fish species from the Texas Gulf Coast. Mar Pollut Bull. 124 (1): 82-88. DOI: <https://doi.org/10.1016/j.marpolbul.2017.06.080>

POZO K, GOMEZ V, TORRES M, VERA L, NUÑEZ D, OYARZÚN P, MENDOZA G, CLARKE B, FOSSI MC, BAINI M, et al. 2019. Presence and characterization of microplastics in fish of commercial importance from the Biobío region in central Chile. Mar Pollut Bull. 140: 315-319. DOI: <https://doi.org/10.1016/j.marpolbul.2019.01.025>

RICCIARDELLI L, NEWSOME SD, DELLABIANCA NA, BASTIDA R, FOGEL ML, GOODALL RNP. 2013. Ontogenetic diet shift in Commerson's dolphin (*Cephalorhynchus commersonii commersonii*) off Tierra del Fuego. Polar Biol. 36 (5): 617-627. DOI: <https://doi.org/10.1007/s00300-013-1289-5>

SÁNCHEZ-GUERRERO-HERNÁNDEZ MJ, GONZÁLEZ-

FERNÁNDEZ D, SENDRA M, RAMOS F, YESTE MP, GONZÁLEZ-ORTEGÓN E. 2023. Contamination from microplastics and other anthropogenic particles in the digestive tracts of the commercial species *Engraulis encrasicolus* and *Sardina pilchardus*. *Sci Total Environ.* 860: 160451. DOI: <https://doi.org/10.1016/j.scitotenv.2022.160451>

SANTONICOLA S, VOLGARE M, OLIVIERI F, COCCA M, COLAVITA G. 2025. Natural and regenerated cellulosic microfibers dominate anthropogenic particles ingested by commercial fish species from the Adriatic Sea. *Foods.* 14 (7): 1237. DOI: <https://doi.org/10.3390/foods14071237>

SANTONICOLA S, VOLGARE M, ROSSI F, CASTALDO R, COCCA M, COLAVITA G. 2024. Detection of fibrous microplastics and natural microfibers in fish species (*Engraulis encrasicolus*, *Mullus barbatus* and *Merluccius merluccius*) for human consumption from the Tyrrhenian Sea. *Chemosphere.* 363: 142778. DOI: <https://doi.org/10.1016/j.chemosphere.2024.142778>

SCACCO U, MANCINI E, MARCUCCI F, TIRALONGO F. 2022. Microplastics in the deep: comparing dietary and plastic ingestion data between two Mediterranean bathyal opportunistic feeder species, *Galeus melastomus*, Rafinesque, 1810 and *Coelorinchus caelorhincus* (Risso, 1810), through stomach content analysis. *J Mar Sci Eng.* 10 (5): 624. DOI: <https://doi.org/10.3390/jmse10050624>

SCHEJTER L, ALBANO M. 2021. Benthic communities at the marine protected area Namuncurá/Burdwood bank, SW Atlantic Ocean: detection of vulnerable marine ecosystems and contributions to the assessment of the rezoning process. *Polar Biol.* 44 (10): 2023-2037. DOI: <https://doi.org/10.1007/s00300-021-02936-y>

SCHEJTER L, MARTIN J, LOVRICH G. 2017. Unveiling the submarine landscape of the Namuncurá Marine Protected Area, Burdwood Bank, SW Atlantic Ocean. *Panam J Aquat Sci.* 12 (3): 248-253.

SCHEJTER L, RIMONDINO C, CHIESA I, DÍAZ DE ASTARLOA JM, DOTI B, ELÍAS R, ESCOLAR M, GENZANO G, LÓPEZ-GAPPA J, TATIÁN M, et al. 2016. Namuncurá Marine Protected Area: an oceanic hot spot of benthic biodiversity at Burdwood Bank, Argentina. *Polar Biol.* 39 (12): 2373-2386. DOI: <https://doi.org/10.1007/s00300-016-1913-2>

SINGH RP, MISHRA S, DAS AP. 2020. Synthetic microfibers: pollution toxicity and remediation. *Chemosphere.* 257: 127199. DOI: <https://doi.org/10.1016/j.chemosphere.2020.127199>

SUARIA G, ACHTYPPI A, PEROLOD V, LEE JR, PIERUCCI A, BORNMAN TG, ALIANI S, RYAN PG. 2020. Microfibers in oceanic surface waters: a global characterization. *Sci Adv.* 6 (23). DOI: <https://doi.org/10.1126/sciadv.aay8493>

VILLÉGER S, BROSSE S, MOUCHET M, MOUILLOT D, VANNI MJ. 2017. Functional ecology of fish: current approaches and future challenges. *Aquat Sci.* 79 (4): 783-801. DOI: <https://doi.org/10.1007/S00027-017-0546-Z>

XIAO S, CUI Y, BRAHNEY J, MAHOWALD NM, LI Q. 2023. Long-distance atmospheric transport of microplastic fibres influenced by their shapes. *Nat Geosci.* 16 (10): 863-870. DOI: <https://doi.org/10.1038/s41561-023-01264-6>

YUAN Z, NAG R, CUMMINS E. 2022. Human health concerns regarding microplastics in the aquatic environment - From marine to food systems. *Sci Total Environ.* 823: 153730. DOI: <https://doi.org/10.1016/j.scitotenv.2022.153730>

ZAZOULI M, NEJATI H, HASHEMPOUR Y, DEHBANDI R, NAM VT, FAKHRI Y. 2022. Occurrence of microplastics (MPs) in the gastrointestinal tract of fishes: a global systematic review and meta-analysis and meta-regression. *Sci Total Environ.* 815: 152743. DOI: <https://doi.org/10.1016/j.scitotenv.2021.152743>

ZHANG F, XU J, ZHU L, PENG G, JABEEN K, WANG X, LI D. 2021. Seasonal distributions of microplastics and estimation of the microplastic load ingested by wild caught fish in the East China Sea. *J Hazard Mater.* 419: 126456. DOI: <https://doi.org/10.1016/j.jhazmat.2021.126456>

