An observational analysis of the eastern tropical Pacific Shallow Meridional Circulation using YOTC data and pilot balloons from Isla del Coco, Costa Rica

Authors

  • Gabriela Mora-Rojas Centro de Investigaciones Geofísicas (CIGEFIS), Universidad de Costa Rica (UCR), 11501-2060 San José, Costa Rica - Escuela de Física (EFIs), Universidad de Costa Rica (UCR), 11501-2060 - San José, Costa Rica
  • Eric J. Alfaro Centro de Investigaciones Geofísicas (CIGEFIS), Universidad de Costa Rica (UCR), 11501-2060 San José, Costa Rica - Escuela de Física (EFIs), Universidad de Costa Rica (UCR), 11501-2060 - San José, Costa Rica - Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), Universidad de Costa Rica (UCR), 11501-060 - San José, Costa Rica - Centro de Investigación en Matemática Pura y Aplicada (CIMPA), Universidad de Costa Rica (UCR), 11501-060 - San José, Costa Rica

DOI:

https://doi.org/10.47193/mafis.37X2024010106

Keywords:

Low-level atmosphere, Hadley circulation cell, Ekman pumping, ERA5, Central America, pilot balloons, Chocó region

Abstract

The low-level circulation of the atmosphere over Isla del Coco has been studied and the presence of a northerly wind at low levels of the atmosphere in the eastern tropical Pacific, in addition to the deep Hadley circulation cell, has been confirmed. Using data from pilot balloons (May 1997 through January 1999, October 2007 through April 2008), the northern flow is between 1 and 5 km high, depending on the time of year, with a maximum speed located between 2 and 3 km above the surface. The generating mechanism of the surface return flow in the Hadley circulation cell has been formulated as a sea breeze, Ekman pumping of the boundary layer, and it could even be a response to the Rossby wave generated by warming in the Chocó region. These results agree with those obtained from the ERA5 reanalysis (January 1979 through December 2020), which show that the southern return cell varies in position and height during the course of the year, with a poorly organized circulation in March and strengthening from July to February. The incorporation of data of low, medium and high cloud cover from Year of the Tropical Convection (boreal summer 2009) evidenced the presence of high-level clouds in the ITCZ region and low-level clouds to the south of the ITCZ, latitudes where the south surface circulation cell is located.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biography

Eric J. Alfaro, Centro de Investigaciones Geofísicas (CIGEFIS), Universidad de Costa Rica (UCR), 11501-2060 San José, Costa Rica - Escuela de Física (EFIs), Universidad de Costa Rica (UCR), 11501-2060 - San José, Costa Rica - Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), Universidad de Costa Rica (UCR), 11501-060 - San José, Costa Rica - Centro de Investigación en Matemática Pura y Aplicada (CIMPA), Universidad de Costa Rica (UCR), 11501-060 - San José, Costa Rica

References

Alfaro E. 2002. Some characteristics of the annual precipitation cycle in Central America and their relationships with its surrounding tropical oceans. Top Meteoro Oceanog. 9 (2): 88-103.

Alfaro EJ. 2008. Ciclo diario y anual de variables troposféricas y oceánicas en la Isla del Coco, Costa Rica. Rev Biol Trop. 56 (2): 19-29. DOI: https://doi.org/10.15517/rbt.v56i2.26936

Amador JA, Alfaro EJ, Lizano OG, Magaña VO. 2006. Atmospheric forcing of the eastern tropical Pacific: a review. Prog Oceanogr. 69: 101-142. DOI: https://doi.org/10.1016/j.pocean.2006.03.007

Amador JA, Durán-Quesada AM, Rivera ER, Mora G, Sáenz F, Calderón B, Mora N. 2016b. The easternmost tropical Pacific. Part II: seasonal and intraseasonal modes of atmospheric variability. Rev Biol Trop. 64 (1): 23-57. DOI: https://doi.org/10.15517/rbt.v64i1.23409

Amador JA, Rivera ER, Durán-Quesada AM, Mora G, Sáenz F, Calderón B, Mora N. 2016a. The easternmost tropical Pacific. Part I: a climate review. Rev Biol Trop. 64 (1): 1-22. DOI: https://doi.org/10.15517/rbt.v64i1.23407

Back LE, Bretherton CS. 2009. On the relationship between SST gradients, boundary layer winds and convergence over the tropical oceans. J Clim. 22: 4182-4196. DOI: https://doi.org/10.1175/2009JCLI2392.1

Chelton DB, Esbensen SK, Schlax MG, Thum N, Freilich MH, Wentz FJ, Gentemann CL, McPhaden MJ, Schopf PS. 2001. Observations of coupling between surface wind stress and sea surface temperature in the Eastern Tropical Pacific. J Clim. 14: 1479-1498. DOI: https://doi.org/10.1175/1520-0442(2001)014<1479:OOCBSW>2.0.CO;2

Chelton DB, Freilich MH, Esbensen SK. 2000. Satellite observations of the wind jets off the Pacific coast of Central America. Part II: regional relationships and dynamical considerations. Mon Weather Rev. 128: 1993-2018. DOI: https://doi.org/10.1175/1520-0493(2000)128<2019:SOOTWJ>2.0.CO;2

Cortés Núñez J, Acuña González J, Alfaro Martínez E, Lizano Rodríguez O, Morales Ramírez Á. 2009. Conocimiento y gestión de medios marinos y coralinos del Area de Conservación Marina Isla del Coco. Informe final del proyecto de investigación No. 08-A7-520. San José: Centro de Investigación en Ciencias del Mar y Limnología (CIMAR). [accessed 2023 Jul]. http://www.kerwa.ucr.ac.cr/handle/10669/436.

Deser C, Bates JJ, Wahl S. 1993. The influence of sea surface temperature gradients on stratiform cloudiness along the equatorial front in the Pacific Ocean. J Clim. 6: 1172-1179. DOI: https://doi.org/10.1175/1520-0442(1993)006<1172:TIOSST>2.0.CO;2

de Szoeke SP, Bretherton CS, Bond NA, Cronin MF, Morley BM. 2005. EPIC 95°W observations of the Eastern Pacific atmospheric boundary layer from the cold tongue to the ITCZ. J Atmos Sci. 62: 426-442. DOI: https://doi.org/10.1175/JAS-3381.1

Douglas MW, Murillo J. 2008. The Pan-American climate studies sounding network. Bull Am Meteorol Soc. 89: 1709-1726. DOI: https://doi.org/10.1175/2008BAMS2521.1

Durán-Quesada AM, Sorí R, Ordóñez P, Gimeno L. 2020. Climate perspectives in the Intra-Americas seas. Atmosphere. 11 (9): 959. DOI: https://doi.org/10.3390/atmos11090959

González AO, Mora-Rojas G. 2014. Balanced dynamics of deep and shallow Hadley circulations in the tropics. J Adv Model Earth Syst. 6: 777-804. DOI: https://doi.org/10.1002/2013MS000278

Hack JJ, Schubert WH. 1990. Some dynamical properties of idealized, thermally-forced meridional circulations in the Tropics. Meteorol Atmos Phys. 44: 101-117. DOI: https://doi.org/10.1007/BF01026813

Hack JJ, Schubert WH, Stevens DE, Kuo HC. 1989. Response of the Hadley circulation to convective forcing in the ITCZ. J Atmos Sci. 46: 2957-2973. DOI: https://doi.org/10.1175/1520-0469(1989)046<2957:ROTHCT>2.0.CO;2

Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, Nicolas J, Peubey C, Radu R, Schepers D, et al. 2020. The ERA5 global reanalysis. Q J R Meteorol Soc. 146: 1999-2049. DOI: https://doi.org/10.1002/qj.3803

Huaman L, Maloney ED, Shumacher C, Kalidis GN. 2021. Easterly waves in the East Pacific during OTREC 2019 field campaign. J Atmos Sci. 78 (12): 4071-4088. DOI: https://doi.org/10.1175/JAS-D-21-0128.1

Kang SM, Held IM, Frierson DMW, Zhao M. 2008. The response of the ITCZ to extratropical thermal forcing: idealized slab-ocean experiments with a GCM. J Clim. 21: 3521-3532. DOI: https://doi.org/10.1175/2007JCLI2146.1

Lindzen RS, Hou AV. 1988. Hadley circulations for zonally averaged heating centered off the Equator. J Atmos Sci. 45: 2416-2427. DOI: https://doi.org/10.1175/1520-0469(1988)045<2416:HCFZAH>2.0.CO;2

Lindzen RS, Nigam S. 1987. On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J Atmos Sci. 44: 2418-2436. DOI: https://doi.org/10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2

Lizano O. 2001. Batimetría de la plataforma insular alrededor de la Isla del Coco, Costa Rica. Rev Biol Trop. 49 (2): 163-170.

Maldonado T, Alfaro E. 2010. Comparación de las salidas del modelo MM5v3 con datos observados en la Isla del Coco, Costa Rica. Tecnol Marcha. 23 (4): 3-28.

McGauley M, Zhang C, Bond NA. 2004. Large-scale characteristics of the atmospheric boundary layer in the Eastern Pacific cold tongue-ITCZ region. J Clim. 17: 3907-3920. DOI: https://doi.org/10.1175/1520-0442(2004)017<3907:LCOTAB>2.0.CO;2

McNoldy BD, Ciesielski PE, Schubert WH, Johnson RH. 2004. Surface winds, divergence, and vorticity in stratocumulus regions using QuikSCAT and reanalysis winds. Geophys Res Lett. 31: L08105. DOI: https://doi.org/10.1029/2004GL019768

Mesa-Sánchez OL, Rojo-Hernández JD. 2020. On the general circulation of the atmosphere around Colombia. Rev Acad Colomb Cienc Exactas Fis Nat. 44 (172): 857-875. DOI: https://doi.org/10.18257/raccefyn.899

Mora-Rojas G. 2017. Climatology of the low-level winds over the intra-Americas sea using satellite and reanalysis data. Top Meteoro Oceanogr. 16 (1): 15-30. https://www.kerwa.ucr.ac.cr/handle/10669/76016.

Neiburger M, Johnson D, Chien C. 1961. Studies of the structure of the atmosphere over the eastern Pacific Ocean in summer, I. The inversion over the eastern north Pacific Ocean. Univ Calif Press Publ Meteo. 1: 1-94.

Nolan DS, Powell SW, Zhang C, Mapes BE. 2010. Idealized simulations of the Intertropical Convergence Zone and its multilevel flows. J Atmos Sci. 67: 4028-4053. DOI: https://doi.org/10.1175/2010JAS3417.1

Nolan DS, Zhang C, Chen S. 2007. Dynamics of the shallow meridional circulation around Intertropical Convergence Zones. J Atmos Sci. 64: 2262-2285. DOI: https://doi.org/10.1175/JAS3964.1

Philander SGH, Gu D, Halpern D, Lambert G, Li T, Halpern D, Lau NC, Pacanowski RC. 1996. Why is the ITCZ mostly north of the Equator. J Clim. 9: 2958-2972. DOI: https://doi.org/10.1175/1520-0442(1996)009<2958:WTIIMN>2.0.CO;2

Schubert WH, Ciesielski PE, Stevens DE, Kuo H. 1991. Potential vorticity modeling of the ITCZ and the Hadley circulation. J Atmos Sci. 48: 1493-1509. DOI: https://doi.org/10.1175/1520-0469(1991)048<1493:PVMOTI>2.0.CO;2

Tomas RA, Webster PJ. 1997. The role of inertial instability in determining the location and strength of near-equatorial convection. Q J R Meteorol Soc. 123 (542): 1445-1482. DOI: https://doi.org/10.1002/qj.49712354202

Trenberth KE, Stepaniak DP, Caron JM. 2000. The global monsoon as seen through the divergent atmospheric circulation. J Clim. 13: 3969-3993. DOI: https://doi.org/10.1175/1520-0442(2000)013<3969:TGMAST>2.0.CO;2

von Ficker H. 1936. Die Passatinversion. Veröff Meteor Inst Univ Berlin. 1: 1-33.

Waliser DE, Moncrieff MW, Burridge D, Fink AH, Gochis D, Goswami BN, Guan B, Harr P, Heming J, Hsu H, et al. 2012. The “Year” of Tropical Convection (May 2008-April 2010): climate variability and weather highlights. Bull Am Meteorol Soc. 93: 1189-1218. DOI: https://doi.org/10.1175/2011BAMS3095.1

Wallace JM, Mitchell TP, Deser C. 1989. The influence of sea-surface temperature on surface wind in the Eastern Equatorial Pacific: seasonal and interannual variability. J Clim. 2: 1492-1499. DOI: https://doi.org/10.1175/1520-0442(1989)002<1492:TIOSST>2.0.CO;2

Wang Y, Xie S, Wang B, Xu H. 2005. Large-scale atmospheric forcing by southeast Pacific boundary layer clouds: a regional model study. J Clim. 18: 934-951. DOI: https://doi.org/10.1175/JCLI3302.1

Zhang C, McGauley M, Bond NA. 2004. Shallow meridional circulation in the tropical eastern Pacific. J Clim. 17: 133-139. DOI: https://doi.org/10.1175/1520-0442(2004)017<0133:SMCITT>2.0.CO;2

Zhang C, Nolan DS, Thorncroft CD, Nguyen H. 2008. Shallow meridional circulations in the tropical atmosphere. J Clim. 21: 3453-3470. DOI: https://doi.org/10.1175/2007JCLI1870.1

Downloads

Published

2024-01-10

How to Cite

Mora-Rojas, G. and Alfaro, E. J. (2024) “An observational analysis of the eastern tropical Pacific Shallow Meridional Circulation using YOTC data and pilot balloons from Isla del Coco, Costa Rica”, Marine and Fishery Sciences (MAFIS), 37(3), pp. 413–434. doi: 10.47193/mafis.37X2024010106.