Potential and effective capture of macrobenthic fauna associated to the Central Area (43° 30' S-48° S) of the southern king crab (Lithodes santolla) fishing in Argentina
DOI:
https://doi.org/10.47193/mafis.3512022010106Keywords:
Benthos, southern king crab fishery, bycatch, trapsAbstract
Fisheries targeting benthic species may have a negative impact on the bycatch and the seabed; however, passive gears such as traps are considered less harmful. The objective of this work was to evaluate the impact of the southern king crab (Lithodes santolla) trap fishing on the macrobenthic communities that are distributed in the Central Patagonian Area (44° S-47° S). The composition of the fauna present in the benthic communities of the Central Patagonian Area of the fishery for the southern king crab (potentially catchable fauna) was compared with the macrobenthic fauna that is retained in the traps (effectively captured or held fauna). The ‘potentially catchable’ benthic fauna was determined by means of a trawl collection, while the ‘effectively captured or held’ fauna was obtained from fishing with trap lines used by southern king crab vessels. In both cases, the data was collected during 2016 in the Central Patagonian Area. The number of registered taxa was considerably higher for the ‘potentially catchable’fauna (80 versus 15), with the taxa actually captured in traps representing only 18.7% of the total taxa that could potentially be captured. The ‘potentially catchable’ fauna is characterized (in biomass and frequency of appearance) by shrimp, sponges, brachiopods and tunicates, all sessile species with the exception of shrimp. The fauna ‘effectively captured’ by the traps was characterized by organisms with active predatory behavior (crabs and echinoderms), with a predominance of the spider crab (Libidoclaea granaria), although its spatial distribution does not coincide with the highest abundances of southern king crab. It was determined that the effect of trap fishing on the most abundant species (shrimp) as well as on those that have a relevant ecological role in the system (e.g. sponges and tunicates) is very low, since there was a clear differentiation between the macrobenthic fauna with the potential to be catchable and that effectively retained in the traps.
Downloads
Metrics
References
Bianchi SJ, Firpo CA, Mauna AC, Lértora HP, Mango V. 2019. El cangrejo araña (Libidoclaea granaria) como fauna acompañante de la pesquería de centolla en el área patagónica central (44°-48° S). Inf Inv INIDEP Nº 84/2019. 13 p.
Brind’Amour A, Laffargue P, Morin J, Vaz S, Foveau A, LE Bris H. 2014. Morphospecies and taxonomic sufficiency of benthic megafauna in scientific bottom trawl surveys. Cont Shelf Res. 72: 1-9.
Callaway R, Alsvag J, DE Boois I, Cotter J, Ford A, Hinz H, Jennings S, Kroncke I, Lancaster J, Piet G, Prince P, Ehrich S. 2002. Diversity and community structure of epibenthic invertebrates and fish in the North Sea. ICES J Mar Sci. 59: 1199-1214.
Clarke KR, Somerfield PJ, Gorley RN. 2008. Testing of null hypotheses in exploratory community analyses: similarity profiles and biota-environment linkage. J Exp Mar Biol Ecol. 366: 56-69.
Clarke KR, Warwick RM. 2001. Change in marine communities: an approach to statistical analysis and interpretation. Plymouth: PRIMER-E. 176 p.
Coleman RA, Hoskin MG, Von Carlshausen E, Davis CM. 2013. Using a no-take zone to assess the impacts of fishing: Sessile epifauna appear insensitive to environmental disturbances from commercial potting. J Exp Mar Biol Ecol. 440: 100-107.
De Juan S, Thrush SF, Demestre M. 2007. Functional changes as indicators of trawling disturbance on a benthic community located in a fishing ground (NW Mediterranean Sea). Mar Ecol Prog Ser. 334: 117-129.
Eno NC, MacDonald DS, Kinnear JAM, Amos SC, Chapman CJ, Clark RA, Bunker FS, Munroc. 2001. Effects of crustacean traps on benthic fauna. ICES J Mar Sci. 58: 11-20.
[FAO] Food and Agriculture Organization of the United Nations. 1998. Guidelines for the routine collection of capture fishery data. FAO Fish Tech Paper. 382. 122 p.
Fernández M, Roux A, Fernández E, Caló J, Marcos A, Aldacur H. 2003. Grain-size analysis of superficial sediments from Golfo San Jorge, Argentina. J Mar Biol Assoc UK. 83: 1193-1197.
Gaitán E, Giberto D, Escolar M, Bremec C. 2014. Fauna bentónica asociada a los fondos de pesca en la plataforma patagónica entre 41°S y 48°S. Resultados de la campaña de evaluación de merluza EH-04/13. Inf Inv INIDEP Nº 35/2014. 19 p.
Gaitan E, Souto V. 2017. Estructura de las comunidades de macro-invertebrados bentónicos asociados al área de distribución (34-47°S) de Merluccius hubbsi (merluza común) inferida a partir de arrastres de fondo. Inf Inv INIDEP Nº 88/2017. 27 p.
Gaitan E, Souto V. 2018. Fauna macro-bentónica asociada a la zona de cría de Merluccius hubbsi (merluza común) entre 44° y 47° S. Resultados de la campaña EH 01-18 y comparación con el año 2017. Inf Inv INIDEP Nº 124/2018. 13 p.
Grabowski JH, Bachman M, Demarest C, Eayrs S, Harris BP, Malkoski V, Packer D, Stevenson D. 2014. Assessing the vulnerability of marine benthos to fishing gear impacts. Rev Fish Sc Aquac. 22 (2): 142-155.
Hall MA, Alverson DL, Metuzals KI. 2000. By-catch: problems and solutions. Mar Pollut Bull. 41: 204-219.
Jenkins LD, Garrison K. 2013. Fishing gear substitution to reduce bycatch and habitat impacts: an example of social-ecological research to inform policy. Mar Pol. 38: 293-303.
Jørgensen LL, Renaud PE, Cochrane S. 2011. Improving benthic monitoring by combining trawl and grab surveys. Mar Poll Bull. 62: 1183-1190.
Mauna C, Firpo C, Mango V, Lértora P, Bambill G. 2018. Actualización del protocolo de actividades a bordo de buques centolleros. Inf Ases Transf INIDEP Nº 179/2018. 30 p.
Mauna C, Firpo C, Mango V, Lértora P, Bambill G, Wyngaard J. 2017. Fauna acompañante de centolla (Lithodes santolla) en el Área II (sector patagónico central). Inf Inv INIDEP Nº 83/2017. 5 p.
Nadtochy A, Kolpakov NV, Korneichuk IA. 2017. The distribution of macrozoobenthos taxa, as potential indicators of Vulnerable Marine Ecosystems in the Western Bering Sea: 1. Anadyr Bay Area. Russ J Mar Biol. 4 (7): 555-567.
Öndes F, Kaiser M, Murray L. 2018. Fish and invertebrate by-catch in the crab pot fishery in the Isle of Man, Irish Sea. J Mar Biol Ecol Assoc UK. 98 (8): 2099-2111.
Page JW, Curran MC, Geer PJ. 2013. Characterization of the bycatch in the commercial blue crab pot fishery in Georgia, November 2003-December 2006. Mar Coast Fish: Dynam Manag Ecosyst Sc. 5: 236-245.
Pham CK, Menezes G, Porteiro F, Braga-Henriques A, Vandeperre F, Morato T. 2014. Deep-water longline fishing has reduced impact on Vulnerable Marine Ecosystems. Scient Rep. 4: 4837. doi:10.1038/srep04837
Poirier LA, Tummon Flynn P, Gehrels H, Quijón PA. 2020. Fukui foldable traps versus fyke nets as options for fishing European Green crabs (Carcinus maenas) in soft-bottom habitats: exploring efficiency and limiting bycatch. Fish Res. 230: 105637.
Roux AM, Fernandez M, Bremec C. 1995. Estudio preliminar de las comunidades bentónicas de los fondos de pesca de langostino patagónico del Golfo San Jorge (Argentina). Cienc Mar. 21 (3): 295-310.
Shester GG, Micheli F. 2011. Conservation challenges for small-scale fisheries: bycatch and habitat impacts of traps and gillnets. Biol Conserv. 144: 1673-1681.
Schweitzer CC, Lipcius RN, Stevens BG. 2018. Impacts of a multi-trap line on benthic habitat containing emergent epifauna within the Mid-Atlantic Bight. ICES J Mar Sci. 75: 2202-2212.
Stevens BG. 2014. Impacts of fishing on king crabs: bycatch, injuries, and mortality. En: Stevens BG, editor. King crabs of the world: biology and fisheries management. Boca Ratón: CRC Press (Taylor and Francis). p. 363-402.
Stevens BG. 2021. The ups and downs of traps: environmental impacts, entanglement, mitigation, and the future of trap fishing for crustaceans and fish. ICES J Mar Sci. 78 (2): 584-59. DOI: https://doi.org/10.1093/icesjms/fsaa135
Suuronen P, Chopina F, Glass C, Løkkeborg S, Matsushita Y, Queirolo D, Rihan D. 2012. Low impact and fuel efficient fishing-looking beyond the horizon. Fish Res. 119/120: 135-146.
Tallack SML. 2007. Escape ring selectivity, bycatch, and discard survivability in the New England fishery for deep-water red crab, Chaceon quinquedens. ICES J Mar Sci. 64: 1579-1586.
Wyngaard J, Firpo C, Iorio MI. 2006. Informe sobre actividades desarrolladas, en el marco del “Plan de factibilidad para el desarrollo de una pesquería basada en crustáceos bentónicos” (Res. CFP 15/03 y 16/03). Inf Téc INIDEP Nº 13/2006. 19 p.
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Esteban Gaitán, Cecilia Mauna, Carla Firpo, Pablo Lértora, Valeria Mango
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors of articles published in Marine and Fishery Sciences retain copyright on their articles, except for any third-party images and other materials added by Marine and Fishery Sciences, which are subject to copyright of their respective owners. Authors are therefore free to disseminate and re-publish their articles, subject to any requirements of third-party copyright owners and subject to the original publication being fully cited. Visitors may also download and forward articles subject to the citation requirements. The ability to copy, download, forward or otherwise distribute any materials is always subject to any copyright notices displayed. Copyright notices must be displayed prominently and may not be obliterated, deleted or hidden, totally or partially.
This journal offers authors an Open Access policy. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other legal purpose within the Creative Commons 4.0 license (BY-NC-SA), without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of Open Access.