A data-limited approach to determine the status of the artisanal fishery of sea silverside in southern Chile

Authors

  • Paulo Mora Programa de Magíster en Ciencias Mención Pesquerías, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Chile. Instituto de Fomento Pesquero, Valparaíso, Chile.
  • Guillermo Figueroa-Muñoz Programa de Magíster en Ciencias Mención Pesquerías, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Chile. Núcleo Milenio INVASAL and Genomics in Ecology, Evolution and Conservation Laboratory (GEECLAB), Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile. Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Rudecindo Ortega 02950, Temuco, Chile.
  • Luis Cubillos Programa de Magíster en Ciencias Mención Pesquerías, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Chile. Centro COPAS COASTAL, Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción, Chile.
  • Poliana Strange-Olate Programa de Magíster en Ciencias Mención Pesquerías, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Chile.

DOI:

https://doi.org/10.47193/mafis.3522022010508

Keywords:

data-poor, assessment, small-scale fishery, simulations, life history

Abstract

Artisanal fisheries are essential, but for most the status of the stock supporting the fishing activity remains unknown due to lack of data and difficult access to sampling. For example, the artisanal fishery of sea silverside Odontesthes (Austromenidia) regia, in the Los Lagos administrative region of Chile, requires a data-limited approach to determine its status because the fishery administration has not invested in its monitoring. The approach consisted of estimating the spawning potential ratio (SPR) from length-frequency data collected in 2019 using length-based spawning potential ratio (LBSPR) and biological reference points using the only-catch optimized method (OCOM) to catch data covering from 1960 to 2020. In addition, five age-structured sea silverside populations were simulated considering uncertainty in recruitment and utilizing life-history parameters estimated by FishLife. According to LBSPR, the SPR was 0.58 (95% confidence intervals: 0.5-0.7), suggesting a fully exploited fishery status. The OCOM result was inconsistent with the life-history parameters and was discarded as a valid sea silverside stock assessment. The age-structured population simulations indicated evidence of a reduction in the spawning stock biomass close to 75% of the unexploited condition in 1960. Thus, the underexploited status reached a probability close to 49.4%, and the fully exploited status was 41.2%. The framework for a data-limited stock-assessment approach and results obtained here for the sea silverside are starting essential steps that may be emulated in other artisanal data-limited fisheries.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

AKAIKE H. 1974. A new look at the statistical model identification. IEEE T Automat Contr. 19 (6):716–723. DOI: https://doi.org/10.1109/tac.1974.1100705

ARELLANO CE, SWARTZMAN G. 2010. The Peruvian artisanal fishery: Changes in patterns and distribution over time. Fish Res. 101 (3): 133-145. DOI: https://doi.org/10.1016/j.fishres.2009.08.007

ARRIETA SB, GOICOCHEA CE, MOSTACERO JA. 2010. Edad y crecimiento del pejerrey Odontesthes regia regia (Humboldt) en el mar peruano. 2002. Inf Inst Mar Perú, Callao. 37 (3-4): 75-77.

BARROS SE, IWASZKIW JM. 2006. Fecundidad del Pejerrey Odontesthes bonariensis (Cuvier y Valenciennes, 1835) (Pisces: Atherinidae) en el embalse Cabra Corral, Provincia de Salta, Argentina. AquaTIC. 24: 42-49.

BRIAN S, DYER H. 2006. Systematic revision of the south American silversides (Teleostei, Atheriniformes). Biocell. 30 (1): 69–88.

CAMPOS LEÓN S, INCIO PÉREZ A, PINAZO K. 2020. Aspectos biológicos y pesqueros del pejerrey Odontesthes regia (Humboldt, 1821) en Arequipa. Enero 2016-setiembre 2018. Bol Inst Mar Perú, Callao. 35 (1): 88-95.

CARRUTHERS TR, AGNEW DJ. 2016. Using simulation to determine standard requirements for recovery rates of fish stocks. Mar Policy. 73: 146–153. DOI: https://doi.org/10.1016/j.marpol.2016.07.026

CARRUTHERS TR, HORDYK AR. 2018. The Data-Limited Methods Toolkit (DLMtool): An R package for informing management of data-limited populations. Methods Ecol Evol. 9 (12): 2388-2395. DOI: https://doi.org/10.1111/2041-210x.13081

CIFUENTES R, GONZALEZ J, MONTOYA G, JARA A, ORTIZ N, PIEDRA P, HABIT E. 2012. Weight-length relationships and condition factor of native fish from San Pedro River (Valdivia River basin, Chile). Gayana. 76: 101-110.

DEVILLE D, SANCHEZ G, BARAHONA SP, YAMASHIRO C, ORÉ-CHÁVEZ D, BAZÁN RQ, UMINO T. 2021. Spatio-temporal patterns of genetic variation of the silverside Odontesthes regia in the highly productive Humboldt Current System. Fish Res. 244: 106127. DOI: https://doi.org/10.1016/j.fishres. 2021.106127

DYER BS, GOSZTONYI AE. 1999. Phylogenetic revision of the South American subgenus Austromenidia Hubbs, 1918 (Teleostei, Atherinopsidae, Odontesthes) and a study of meristic variation. Rev Biol Mar Oceanogr. 34 (2): 211-232.

[FAO]. 2018. El estado mundial de la pesca y la acuicultura 2018. Cumplir los objetivos de desarrollo sostenible. Roma. https://www.fao. org/state-of-fisheries-aquaculture/2018/es/.

FREE CM. 2018. datalimited2: More stock assessment methods for data-limited fisheries. R package version 0.1.0. https://github.com/ cfree14/datalimited2

FREE CM, JENSEN OP, ANDERSON SC, GUTIERREZ NL, KLEISNER KM, LONGO C, MINTO C, OSIO GC, WALSH JC. 2020. Blood from a stone: Performance of catch-only methods in estimating stock biomass status. Fish Res. 223: 105452. DOI: https://doi.org/10.1016/j.fishres.2019.105452

FROESE R, BINOHLAN C. 2000. Empirical relationships to estimate asymptotic length, length at first maturity and length at maximum yield per recruit in fishes, with a simple method to evaluate length frequency data. J Fish Biol. 56 (4): 758–773. DOI: https://doi.org/10.1111/j.1095-8649.2000.tb00870.x

FROESE R, BINOHLAN C. 2003. Simple methods to obtain preliminary growth estimates for fishes. J Appl Ichthyol. 19 (6): 376–379. DOI: https://doi.org/10.1111/j.1439-0426.2003.00490.x

FROESE R. 2006. Cube law, condition factor and weight--length relationships: history, meta-analysis and recommendations. J Appl Ichthyol. 22 (4): 241–253. DOI: https://doi.org/10.1111/j.1439 -0426.2006.00805.x

FROESE R, PAULY D, editors. 2022. FishBase. World Wide Web electronic publication. [accessed February 2022] https://www. fishbase.org.

GÓMEZ ALFARO C, PEREA DE LA MATTA A, WILLIAMS DE CASTRO M. 2006. Aspectos reproductivos del pejerrey Odontesthes regia regia (Humboldt 1821) en la zona de Pisco durante el período 1996-97 y mayo-julio del 2002, relacionados con su conservación. Ecol Apl. 5 (1-2): 141-147.

GULLAND JA. 1965. Estimation of mortality rates. Annex to the Northeast Arctic working group report. p. 231-241.

HARTING F. 2022. DHARMa - Diagnostics for HierArchical Regression Models (R-package) [accessed March 2022] http://florianhartig. github.io/DHARMa/.

HAWKSHAW M, WALTERS C. 2015. Harvest control rules for mixed-stock fisheries coping with autocorrelated recruitment variation, conser-vation of weak stocks, and economic well-being. Can J Fish Aquat Sci. 72 (5): 759-766. DOI: https://doi.org/10.1139/cjfas-2014-0212

HORDYK A, ONO K, SAINSBURY K, LONERAGAN N, PRINCE J. 2014a. Some explorations of the life history ratios to describe length composition, spawning-per-recruit, and the spawning potential ratio. Ices J Mar Sci. 72 (1): 204-216. DOI: https://doi.org/10.1093/icesjms/fst235

HORDYK A, ONO K, VALENCIA S, LONERAGAN N, PRINCE J. 2014b. A novel length-based empirical estimation method of spawning potential ratio (SPR), and tests of its performance, for small-scale, data-poor fisheries. ICES J Mar Sci. 72 (1): 217-231. doi:10.1093/icesjms/fsu004.

HORDYK AR, ONO K, PRINCE JD, WALTERS CJ. 2016. A simple length-structured model based on life history ratios and incorporating size-dependent selectivity: application to spawning potential ratios for data-poor stocks. Can J Fish Aquat Sci. 73 (12): 1787-1799.

IRIARTE JL, GONZÁLEZ HE, LIU KK, RIVAS C, VALENZUELA C. 2007. Spatial and temporal variability of chlorophyll and primary productivity in surface waters of southern Chile (41.5-43° S). Estuar Coast Shelf Sci. 74 (3): 471-480. DOI: https://doi.org/10.1016/j.ecss.2007.05.015

LAI H-L, HELSER T. 2004. Linear mixed-effects models for weight-length relationships. Fish Res. 70: 377-387.

LE CREN E. 1951. The length-weight relationship and seasonal cycle in gonad weight and condition in the perch (Perca fluviatilis). Journal of Animal Ecology 20 (2): 201-19.

MANGIAFICO S. 2015. An R Companion for the Handbook of Biological Statistics. North Brunswick Township, NJ. Rutgers Coop. Ext.

MORESCO A, BEMVENUTI M DE A. 2006. Reproductive biology of silverside Odontesthes argentinensis (Valenciennes) (Atherinopsidae) of coastal sea region of the South of Brazil. Rev Bras Zool. 23 (4): 1168-1174.

NAGELKERKE NJD. 1991. A note on a general definition of the coefficient of determination. Biometrika 78: 691-692.

NAHDI AAL, GARCIA DE LEANIZ C, KING AJ. 2016. Spatio-temporal variation in length-weight relationships and condition of the ribbonfish Trichiurus lepturus (Linneaus, 1758): implications for fisheries management. PloS ONE. 11 (8): e0161989.

OGLE DH. 2016. Introductory Fisheries Analyses with R. CRC Press, Taylor and Francis Group.

OVANDO D, FREE CM, JENSEN OP, HILBORN R. 2022. A history and evaluation of catch-only stock assessment models. Fish Fish. 23: 616-630. DOI: https://doi.org/10.1111/faf.12637

PAJUELO JG, LORENZO JM. 2000. Biology of the sand smelt, Atherina presbyter (Teleostei: Atherinidae), off the Canary Islands (central-east Atlantic). Environ Biol Fish. 59 (1): 91-97. DOI: https://doi.org/10.1023/a:1007643732673

PAULY D. 1983. Some simple methods for the assessment of tropical fish stocks. FAO Fish Tech Pap. 234: 1-52.

PAVEZ P, PLAZA G, ESPEJO V, DYER B, CERISOLA H, SAAVEDRA J, ALMANZA V, MATAMALA M. 2008. Estudio Biológico-Pesquero del pejerrey de mar X Región (Proyecto FIP Nº 2006- 58). Informe Final. Estud Doc. Pont Univ Católica Valparaíso. 132 p.

PAYÁ I, CANALES C, BUCAREY D, CANALES M, CONTRERAS F, LEAL E, TASCHERI R, YÁÑEZ A, ZÚÑIGA MJ. 2014. Proyecto 2.16: Revisión de los puntos biológicos de referencia (Rendi-miento Máximo Sostenible) en las pesquerías nacionales. Convenio II: Estatus y posibili-dades de explotación biológicamente sustenta-bles de los principales recursos pesqueros nacionales año 2014. Informe Final. Instituto de Fomento Pesquero, Valparaíso. 51 p.

PITA C, VILLASANTE S, PASCUAL-FERNÁNDEZ JJ. 2019. Managing small-scale fisheries under data poor scenarios: lessons from around the world. Mar Policy. 101: 154-157. DOI: https://doi.org/10.1016/j.marpol.2019.02.008

PLAZA G, ESPEJO V, ALMANZA V, CLARAMUNT G. 2011. Female reproductive biology of the silverside Odontesthes regia. Fish Res. 111 (1): 31-39. DOI: https://doi.org/10.1016/j.fishres.2011.06.009

POMEROY SA, NEIL A. 2011. Small-scale fisheries management: frameworks and approaches for the developing world. CABI. Cambridge

PRINCE J, VICTOR S, KLOULCHAD V, HORDYK A. 2015. Length based SPR assessment of eleven Indo-Pacific coral reef fish populations in Palau. Fish Res. 171: 42-58. DOI: https://doi.org/10.1016/ j.fishres.2015.06.008

PUNT AE, COPE JM. 2019. Extending integrated stock assessment models to use non-depensatory three-parameter stock-recruitment relationships. Fish Res. 217: 46-57. DOI: https://doi.org/10.1016/j.fishres.2017.07.007

QUINN TJ, DERISO RB. 1999. Quantitative Fish Dynamics, New York: Oxford Univ.

RAMÍREZ JG, LLEONART J, COLL M, REYES F, PUENTES GM. 2017. Improving stock assessment and management advice for data-poor small-scale fisheries through participa-tory monitoring. Fish Res. 190: 71-83. DOI: https://doi.org/10.1016/j.fishres.2017.01.015

RICARD D, MINTO C, JENSEN OP, BAUM JK. 2012. Examining the knowledge base and status of commercially exploited marine species with the RAM Legacy Stock Assessment Database. Fish Fish. 13 (4): 380-398. DOI: https://doi.org/10.1111/j.1467 -2979.2011.00435.x

SALAS S, CHUENPAGDEE R, SEIJO JC, CHARLES A. 2007. Challenges in the assessment and management of small-scale fisheries in Latin America and the Caribbean. Fish Res. 87 (1): 5-16. DOI: https://doi.org/10.1016/j.fishres.2007.06.015

[SERNAPESCA]. 2020. Anuarios estadísticos de pesca 2020. Servicio Nacional de Pesca y Acuicultura, Chile. http://www.sernapesca.cl/ informacion-utilidad/anuarios-estadisticos-de-pesca-y-acuicultura.

[SUBPESCA]. 2003. Red de Enmalle (GNS). Departamento de Pesquerías. [accesed 25 April 2022] https://www.subpesca.cl/portal/ 616/articles-9191_documento.pdf.

SHARMA R, WINKER H, LEVONTIN P, KELL L, OVANDO D, PALOMARES MLD, PINTO C, YE Y. 2021. Assessing the potential of catch-only models to inform on the state of global fisheries and the UN’s SDGs. Sustainability. 13 (11): 6101. DOI: https://doi.org/10.3390/su13116101

THORSON JT, JENSEN OP, ZIPKIN EF. 2014. How variable is recruitment for exploited marine fishes? A hierarchical model for testing life history theory. Canadian Journal of Fisheries and Aquatic Sciences. 71 (7): 973-983. DOI: https://doi.org/10.1139/cjfas-2013-0645

THORSON JT, MUNCH SB, COPE JM, GAO J. 2017. Predicting life history parameters for all fishes worldwide. Ecol Appl. 27 (8): 2262-2276. DOI: https://doi.org/10.1002/eap.1606

THORSON JT. 2020. Predicting recruitment density dependence and intrinsic growth rate for all fishes worldwide using a data-integrated life-history model. Fish Fish. 21( 2): 237-251. DOI: https://doi.org/10.1111/faf.12427

VENABLES WN, RIPLEY BD. 2002. Modern Applied Statistics with S. Fourth edition. Springer.

VILLAVICENCIO Z, MUCK P. 1984. Estudio de otolitos de Odontesthes regia r., pejerrey: determinación de edad. Bol Inst Mar Perú. Callao. 8 (3): 73-100.

ZHOU S, PUNT AE, SMITH ADM, YE Y, HADDON M, DICHMONT CM, SMITH DC. 2017a. An optimized catch-only assessment method for data poor fisheries. ICES J Mar Sci. 75 (3): 964-976. DOI: https://doi.org/10.1093/icesjms/fsx226

ZHOU S, PUNT AE, YE Y, ELLIS N, DICHMONT CM, HADDON M, SMITH DC, SMITH AD. 2017b. Estimating stock depletion level from patterns of catch history. Fish Fish. 18 (4): 742-751. DOI: https://doi.org/10.1111/faf.12201

ZHOU S, YIN S, THORSON JT, SMITH ADM, FULLER M. 2012. Linking fishing mortality reference points to life history traits: an empirical study. Can J Fish Aquat Sci. 69(8):1292–1301. DOI: https://doi.org/10.1139/f2012-060

Downloads

Published

2022-04-30

How to Cite

Mora, P., Figueroa-Muñoz, G., Cubillos, L. and Strange-Olate, P. (2022) “A data-limited approach to determine the status of the artisanal fishery of sea silverside in southern Chile”, Marine and Fishery Sciences (MAFIS), 35(2), pp. 287–306. doi: 10.47193/mafis.3522022010508.