Bibliometric insight of climate change impact on mackerel (Family Scombridae): global research trend and regional gaps in southeast Asia
DOI:
https://doi.org/10.47193/mafis.3922026010404Keywords:
Systematic literature review, PRISMA method, fisheries managementAbstract
The effects of climate change on mackerel species are highlighted in this review, with particular attention given to changes in spawning, distribution, physiology, and habitat loss. The PRISMA method was used to conduct a systematic literature review that examined 257 peer-reviewed publications from Scopus and Web of Science from 1990 to 2025. Results showed clustering of texts, keywords, and titles based on search terms like climate change vulnerability, impact, mackerel, southeast Asia, and world. High occurrence and link strength showed clusters of: 1) Oceanography and marine ecosystem, 2) Species-specific regional studies, 3) Fisheries and human dimensions and, 4) Fisheries management. Major study themes were found using R bibliometrix and thematic analyses based on VOSviewer: adaptation technique, marine ecosystems, stock assessment, and fishing management. Sea-surface temperature, environmental monitoring, and resilience in marine resource management are highlighted in recent research trends. Traditional fisheries are being challenged by the altered migration and spawning patterns of mackerel due to rising sea surface temperatures and changing currents, necessitating the implementation of flexible and regionally coordinated techniques. Growth, recruitment, and survival are all impacted by these changes because of decreased oxygen, productivity, and prey availability. Conflicts over fisheries may also occur as a result of transboundary fish stock migrations. Adaptive management is still limited despite increasing research because of a lack of institutional support, resources, and monitoring. It is crucial to fill important research gaps in areas including prey dynamics, socioeconomic resilience, and the effects of climate change on mackerel biology. Stronger governance, regional collaboration, and policies that strike a balance between socioeconomic demands and conservation will be necessary to ensure long-term sustainability.
Downloads
References
Aria M, Cuccurullo C. 2017. bibliometrix: An R-tool for comprehensive science mapping analysis. J Informetr. 11 (4): 959-975. DOI: https://doi.org/10.1016/j.joi.2017.08.007
Astthorsson OS, Valdimarsson H, Gudmundsdottir A, Óskarsson GJ. 2012. Climate-related variations in the occurrence and distribution of mackerel (Scomber scombrus) in Icelandic waters. ICES J Mar Sci. 69 (7): 1289-1297. DOI: https://doi.org/10.1093/icesjms/fss084
Bagsit FU, Frimpong E, Asch RG, Monteclaro HM. 2021. Effect of a seasonal fishery closure on sardine and mackerel catch in the Visayan Sea, Philippines. Front Mar Sci. 8: 640772. DOI: https://doi.org/10.3389/fmars.2021.640772
Barange M, Merino G, Blanchard JL, Scholtens J, Harle J, Allison EH, Allen JI, Holt J, Jennings S. 2014. Impacts of climate change on marine ecosystem production in societies dependent on fisheries. Nat Clim Change. 4 (3): 211-216. DOI: https://doi.org/10.1038/nclimate2119
Breitburg D, Levin LA, Oschlies A, Grégoire M, Chavez FP, Conley DJ, Garçon V, Gilbert D, Gutiérrez D, Isensee K. 2018. Declining oxygen in the global ocean and coastal waters. Science. 359 (6371): eaam7240. DOI: https://doi.org/10.1126/science.aam7240
Brunel T, Van Damme CJ, Samson M, Dickey-Collas M. 2018. Quantifying the influence of geography and environment on the northeast Atlantic mackerel spawning distribution. Fish Oceanogr. 27 (2): 159-173. DOI: https://doi.org/10.1111/fog.12242
Chamsai S, Wanchana W. 2022. Issues and challenges in sustainable development of fisheries and aquaculture of the Southeast Asian Region: fisheries-related issues: climate change and natural disasters. Southeast Asian State Fish Aquac. p. 197-204.
Cheung WW, Lam VW, Sarmiento JL, Kearney K, Watson REG, Zeller D, Pauly D. 2010. Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Glob Change Biol. 16 (1): 24-35. DOI: https://doi.org/10.1111/j.1365-2486.2009.01995.x
Cheung WW, Watson R, Pauly D. 2013. Signature of ocean warming in global fisheries catch. Nature. 497 (7449): 365-368. DOI: https://doi.org/10.1038/nature12156
Doney SC, Ruckelshaus M, Duffy JE, Barry JP, Chan F, English CA, Galindo HM, Grebmeier JM, Hollowed AB, Knowlton N. 2012. Climate change impacts on marine ecosystems. Annu Rev Mar Sci. 4: 11-37. DOI: https://doi.org/10.1146/annurev-marine-041911-111611
Dongyu Q. 2024. 2024 the state of world fisheries and aquaculture-blue transformation in action. State World Fish Aquac. p. 1-232.
dos Santos Schmidt TC, Slotte A, Olafsdottir AH, Nøttestad L, Jansen T, Jacobsen JA, Bjarnason S, Lusseau SM, Ono K, Hølleland S, et al. 2024. Poleward spawning of Atlantic mackerel (Scomber scombrus) is facilitated by ocean warming but triggered by energetic constraints. ICES J Mar Sci. 81 (3): 600-615. DOI: https://doi.org/10.1093/icesjms/fsad098 DOI: https://doi.org/10.1093/icesjms/fsad098
Edwards M, Richardson AJ. 2004. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature. 430 (7002): 881-884. DOI: https://doi.org/10.1038/nature02808
Fabro KA. 2020. Gray areas and weak policies mar lucrative Asian trade in live reef fish. Mongabay. [accessed 2025 Dec 31]. https://news.mongabay.com/2020/07/gray-areas-and-weak-policies-mar-lucrative-asian-trade-in-live-reef-fish/.
[FAO] Food and Agriculture Organization of the United Nations. 2018. Rome: FAO. URL Httpfaostat Fao Org. 403 p.
Free CM, Thorson JT, Pinsky ML, Oken KL, Wiedenmann J, Jensen OP. 2019. Impacts of historical warming on marine fisheries production. Science. 363 (6430): 979-983. DOI: https://doi.org/10.1126/science.aau1758
Han H, Shang C, Jiang B, Wang Y, Li Y, Xiang D, Zhang H, Shi Y, Jiang K. 2024. A new modeling strategy for the predictive model of chub mackerel (Scomber japonicus) central fishing grounds in the Northwest Pacific Ocean based on machine learning and operational characteristics of the light fishing vessels. Front Mar Sci. 11: 1451104. DOI: https://doi.org/10.3389/fmars.2024.1451104 DOI: https://doi.org/10.3389/fmars.2024.1451104
Habib A, Borazon EQ, Nallos IM, Macusi E. 2025. Climate change vulnerability, adaptation and ecosystem services in different fisheries and aquaculture in Asia: a review. Mar Fish Sci. 38 (2): 311-330. DOI: https://doi.org/10.47193/mafis.3822025010101
Islam MM, Islam N, Habib A, Mozumder MMH. 2020. Climate change impacts on a tropical fishery ecosystem: implications and societal responses. Sustainability. 12 (19): 7970. DOI: https://doi.org/10.3390/su12197970
Jansen T, Gislason H. 2013. Population structure of Atlantic mackerel (Scomber scombrus). PLoS ONE. 8 (5): e64744. DOI: https://doi.org/10.1371/journal.pone.0064744
Kamaruzzaman YN, Mustapha MA, Ghaffar MA. 2021. Impacts of sea temperature rise on Rastrelliger kanagurta potential fishing grounds in the Exclusive Economic Zone (EEZ) off South China Sea. Sains Malays. 50 (12): 3467-3479. DOI: https://doi.org/10.17576/jsm-2021-5012-01
Kanamori Y, Takasuka A, Nishijima S, Okamura H. 2019. Climate change shifts the spawning ground northward and extends the spawning period of chub mackerel in the western North Pacific. Mar Ecol Prog Ser. 624: 155-166. DOI: https://doi.org/10.3354/meps13037
Lehodey P, Bertrand A, Hobday AJ, Kiyofuji H, McClatchie S, Menkès CE, Pilling G, Polovina J, Tommasi D. 2020. ENSO impact on marine fisheries and ecosystems. El Niño South Oscil Chang Clim. p. 429-451. DOI: https://doi.org/10.1002/9781119548164.ch19
Lu B, Zhao Z, Han L, Gan X, Zhou Y, Zhou L, Fu L, Wang X, Zhou C, Zhang J. 2024. OXYGENERATOR: reconstructing global ocean deoxygenation over a century with deep learning. [accessed 2025 Aug 16]. DOI: https://doi.org/10.48550/ARXIV.2405.07233. DOI: https://doi.org/10.5194/egusphere-egu24-5926
Macusi ED, Macusi ES, Jimenez LA, Catam-isan JP. 2020. Climate change vulnerability and perceived impacts on small-scale fisheries in eastern Mindanao. Ocean Coast Manag. 189: 105143. DOI: https://doi.org/10.1016/j.ocecoaman.2020.105143
Macusi ED, Nallos IV, Santos MD, Geronimo RC. 2025b. Climate and non-climate related hazards in small pelagic fisheries and milkfish aquaculture: expert opinion survey in the Philippines. Philipp J Fish. 32 (1): 178-196. DOI: https://doi.org/10.31398/tpjf/32.1.2024-0024
Macusi ED, Sabino LL, Pislan HT, Macusi ES. 2025a. Impacts of extreme climate change event on small-scale fishers and their adaptation in Baganga, Davao Oriental. World. 25: 6-18. DOI: https://doi.org/10.3390/world6010018
Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA, Group P-P. 2015. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 4 (1): 1. DOI: https://doi.org/10.1186/2046-4053-4-1
Munday PL, Dixson DL, Donelson JM, Jones GP, Pratchett MS, Devitsina GV, Døving KB. 2009. Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. Proc Natl Acad Sci. 106 (6): 1848-1852. DOI: https://doi.org/10.1073/pnas.0809996106
Neven CJ. 2024. Different perspectives on zooplankton functioning in the Southern North Sea and the English Channel in relation to lower and higher trophic levels [doctoral dissertation]. Dunkerque: Université du Littoral Côte d’Opale.
Noack A. 2009. Modularity clustering is force-directed layout. Phys Rev E. 79 (2): 026102. DOI: https://doi.org/10.1103/PhysRevE.79.026102
Ono K, Katara I, Eliasen SK, Broms C, Campbell A, dos Santos Schmidt TC, Egan A, Hølleland SN, Jacobsen JA, Jansen T. 2024. Effect of environmental drivers on the spatiotemporal distribution of mackerel at age in the Nordic Seas during 2010-20. ICES J Mar Sci. 81 (7): 1282-1294. DOI: https://doi.org/10.1093/icesjms/fsae087
Pan X, Chen Y, Jiang T, Yang J, Tian Y. 2024. Otolith biogeochemistry reveals possible impacts of extreme climate events on population connectivity of a highly migratory fish, Japanese Spanish mackerel Scomberomorus niphonius. Mar Life Sci Technol. 6 (4): 722-735. DOI: https://doi.org/10.1007/s42995-024-00229-x
Pandey A, Joseph J. 2025. Emerging trends in blue economy: a roadmap through the lens of sustainable development. Secur Sustain Futur Blue Green Econ. p. 17-36. DOI: https://doi.org/10.4018/979-8-3693-7893-9.ch002
Pecl GT, Araújo MB, Bell JD, Blanchard J, Bonebrake TC, Chen I-C, Clark TD, Colwell RK, Danielsen F, Evengård B. 2017. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science. 355 (6332): eaai9214. DOI: https://doi.org/10.1126/science.aai9214
Pezner AK, Courtney TA, Barkley HC, Chou W-C, Chu H-C, Clements SM, Cyronak T, DeGrandpre MD, Kekuewa SAH, Kline DI, et al. 2023. Increasing hypoxia on global coral reefs under ocean warming. Nat Clim Change. 13 (4): 403-409. DOI: https://doi.org/10.1038/s41558-023-01619-2 DOI: https://doi.org/10.1038/s41558-023-01619-2
Pinsky ML, Mantua NJ. 2014. Emerging adaptation approaches for climate-ready fisheries management. Oceanography. 27 (4): 146-159. DOI: https://doi.org/10.5670/oceanog.2014.93
Pörtner H-O, Karl DM, Boyd PW, Cheung W, Lluch-Cota SE, Nojiri Y, Schmidt DN, Zavialov PO, Alheit J, Aristegui J. 2014. Ocean systems. In: Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press. p. 411-484.
Ren J, Liu Q, Ma Y, Ji Y, Xu B, Xue Y, Zhang C. 2025. Spatio-temporal distribution of four trophically dependent fishery species in the Northern China seas under climate change. Biology. 14 (2): 168. DOI: https://doi.org/10.3390/biology14020168
Sumaila UR, Cheung WW, Lam VW, Pauly D, Herrick S. 2011. Climate change impacts on the biophysics and economics of world fisheries. Nat Clim Change. 1 (9): 449-456. DOI: https://doi.org/10.1038/nclimate1301
Sun J-Z, Zhang D, Yi X, Beardall J, Gao K. 2024. Ocean deoxygenation dampens resistance of diatoms to ocean acidification in darkness. Front Mar Sci. 11: 1387552. DOI: https://doi.org/10.3389/fmars.2024.1387552 DOI: https://doi.org/10.3389/fmars.2024.1387552
Talbot E, Jontila J-BS, Gonzales BJ, Dolorosa RG, Jose ED, Sajorne R, Sailley S, Kay S, Queirós AM. 2024. Incorporating climate-readiness into fisheries management strategies. Sci Total Environ. 918: 170684. DOI: https://doi.org/10.1016/j.scitotenv.2024.170684
Van Eck N, Waltman L. 2010. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 84 (2): 523-538. DOI: https://doi.org/10.1007/s11192-009-0146-3
Vu NK, Nguyen KQ. 2025. The Effect of temporal and environmental conditions on catch rates of the narrow-barred Spanish mackerel setnet fishery in Khanh Hoa Province, Vietnam. Fishes. 10 (6): 257. DOI: https://doi.org/10.3390/fishes10060257
Wang Q, Wu J. 2025. The origin and global spread of Scomberomorus spp.: the intersection of ecological adaptation and fisheries management. Int J Mar Sci. 15: 102345 DOI: https://doi.org/10.5376/ijms.2025.15.0008
Wexler JB, Margulies D, Scholey V, Lennert-Cody CE, Bromhead D, Nicol S, Hoyle SD, Stein M, Williamson JE, Havenhand J. 2023. The effect of ocean acidification on otolith morphology in larvae of a tropical, epipelagic fish species, yellowfin tuna (Thunnus albacares). J Exp Mar Biol Ecol. 569: 151949. DOI: https://doi.org/10.1016/j.jembe.2023.151949
Yang T, Liu X, Han Z. 2022. Predicting the effects of climate change on the suitable habitat of Japanese Spanish mackerel (Scomberomorus niphonius) based on the Species Distribution Model. Front Mar Sci. 9: 927790. DOI: https://doi.org/10.3389/fmars.2022.927790 DOI: https://doi.org/10.3389/fmars.2022.927790
Published
Issue
Section
License
Copyright (c) 2026 Mohammad Ekramul Haque, Shahadat Hossain, Tun Nurul Aimi Mat Jaafar, Ying Giat Seah, Siti Azizah Mohd Nor, Nazia Abdul Kadar, Nur Fadli, Darlina Md Naim, Helena Khatoon, Ahasan Habib

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors of articles published in Marine and Fishery Sciences retain copyright on their articles, except for any third-party images and other materials added by Marine and Fishery Sciences, which are subject to copyright of their respective owners. Authors are therefore free to disseminate and re-publish their articles, subject to any requirements of third-party copyright owners and subject to the original publication being fully cited. Visitors may also download and forward articles subject to the citation requirements. The ability to copy, download, forward or otherwise distribute any materials is always subject to any copyright notices displayed. Copyright notices must be displayed prominently and may not be obliterated, deleted or hidden, totally or partially.
This journal offers authors an Open Access policy. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other legal purpose within the Creative Commons 4.0 license (BY-NC-SA), without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of Open Access.






















