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ABSTRACT. Seagrass meadows play a critical role in coastal blue carbon sequestration, yet they 
are increasingly threatened by anthropogenic activities, especially in tourism-intensive islands. This 
study aimed to estimate seagrass biomass, carbon stocks, and assess the influence of environmental 
parameters on these ecological indicators in Tabuhan Island, Banyuwangi, East Java. Field research 
was conducted during August-September 2023 at two stations (North and East). Data collection in-
volved 50 × 50 cm quadrat transects for seagrass sampling, in situ measurements of environmental 
parameters (temperature, salinity, pH, dissolved oxygen, brightness, current velocity, and substrate 
type), and laboratory analysis of biomass and organic carbon content using the Loss-on-Ignition 
method. Four seagrass species were identified: Cymodocea rotundata, Halophila ovalis, Enhalus 
acoroides, and Thalassia hemprichii. The seagrass ecosystem was in poor condition, with very low 
coverage (0.46% and 0.45%) and density (< 0.02 shoots m-2). The average total biomass was 0.017 g 
DW m-2, with below-ground biomass dominating. The estimated carbon stock was 0.0035 g C m-2, 
stored primarily in below-ground tissues. Multivariate analysis revealed patterns among measured 
variables, with salinity and current velocity loading on one principal component and pH, biomass, 
and carbon stocks loading on another. This study underscores the urgent need for integrated coastal 
management and conservation strategies to protect and restore these vulnerable ecosystems, particu-
larly in developing tourist destinations, to maintain their Nature’s Contributions to People (NCP), 
including climate change mitigation.

Key words: Blue carbon, coastal ecosystem, environmental monitoring, seagrass ecology, tourism 
impact.

Factores ambientales determinantes de las reservas de carbono en la biomasa de pastos marinos 
en un ecosistema indonesio amenazado

RESUMEN. Las praderas de pastos marinos desempeñan un papel crucial en el secuestro de 
carbono azul costero, sin embargo, están cada vez más amenazadas por actividades antropogénicas, 
especialmente en islas con un turismo intensivo. Este estudio tuvo como objetivo estimar la bioma-
sa y el stock de carbono de los pastos marinos, y evaluar la influencia de parámetros ambientales 
sobre estos indicadores ecológicos en la Isla Tabuhan, Banyuwangi, Java Oriental. La investigación 
de campo se llevó a cabo entre agosto y septiembre de 2023 en dos estaciones (Norte y Este). La 
recolección de datos incluyó transectas con cuadrantes de 50 × 50 cm para el muestreo de pastos 
marinos, mediciones in situ de parámetros ambientales (temperatura, salinidad, pH, oxígeno disuel-
to, transparencia, corriente y sustrato), y análisis de laboratorio de la biomasa y el contenido de 
carbono orgánico mediante el método de Pérdida por Ignición. Se identificaron cuatro especies de 
pastos marinos: Cymodocea rotundata, Halophila ovalis, Enhalus acoroides y Thalassia hemprichii. 
El ecosistema de pastos marinos se encontró en mal estado, con una cobertura muy baja (0.46% y 
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INTRODUCTION

Coastal marine ecosystems are essential for 
maintaining global biodiversity, supporting fish-
eries, and protecting shorelines from erosion (Bar-
bier 2017). Among these key habitats, seagrass 
meadows are recognized as foundational species 
creating complex three-dimensional structures 
in shallow coastal waters. They provide essen-
tial nursery grounds for commercially important 
fish and invertebrates, stabilize sediments, and 
enhance water clarity through their filtration ca-
pacity (Cullen-Unsworth et al. 2014). Beyond 
these well-known ecological roles, seagrasses 
have attracted attention in climate change discus-
sions due to their remarkable ability to sequester 
atmospheric carbon dioxide and store it as organic 
carbon, a Nature’s Contribution to People (NCP) 
now widely known as ‘blue carbon’ (Schindler 
Murray et al. 2023). Although they occupy less 
than 0.2% of the ocean floor, seagrass ecosystems 
are highly effective carbon sinks, with their organ-
ic-rich sediments locking away carbon for centu-
ries or even millennia, making their conservation 
a strategic natural climate solution (Fourqurean 
et al. 2012; Macreadie et al. 2021). Despite their 
crucial importance, seagrass meadows are among 
the world’s most threatened ecosystems. Global 
estimates show a loss rate comparable to that of 
coral reefs and tropical rainforests, mainly driven 
by human-related stressors (Waycott et al. 2009; 
Dunic et al. 2021). Coastal development, nutrient 

and sediment pollution from land-based sources, 
and destructive fishing practices degrade water 
quality and reduce light availability, which is 
essential for seagrass photosynthesis (Orth et al. 
2020). More recently, the rapid growth of marine 
tourism has introduced new pressures, including 
physical damage from boat anchors, propeller 
scars, and trampling by swimmers and snorkelers 
(Unsworth et al. 2019). This degradation not only 
reduces biodiversity and fishery productivity but 
also threatens the carbon sequestration function 
of seagrass beds, potentially transforming them 
from carbon sinks into sources of greenhouse gas-
es (Pendleton et al. 2012; Röhr 2019).

In the Indonesian archipelago, home to some of 
the world’s largest and most diverse seagrass beds, 
these threats are especially severe (Hernawan et 
al. 2021). The country’s rapid economic growth 
has led to increased coastal development and a 
booming marine tourism industry, exerting im-
mense pressure on sensitive nearshore ecosystems 
(Supriyadi et al. 2024). Tabuhan Island, a small 
uninhabited island in the Bali Strait off the coast 
of Banyuwangi, East Java, illustrates this trend. 
Designated as a tourism zone, the island attracts 
daily visitors for activities like snorkeling, concen-
trating human impact in a minimal area (Mira and 
Kurniawan 2020). While the island’s coral reefs 
have been studied to some extent, a significant 
scientific gap remains: there is no published data 
on the status, composition, or ecological function 
of Tabuhan Island’s seagrass meadows. This lack 
of baseline information hampers evidence-based 
management and obscures the island’s full role in 

0.45%) y una densidad baja (< 0.02 brotes m-2). La biomasa total promedio fue de 0.017 g PS m-2, dominando la biomasa subterránea. 
El stock de carbono estimado fue de 0.0035 g C m-2, almacenada principalmente en los tejidos subterráneos. La salinidad y el pH fueron 
los principales factores ambientales que diferenciaron las dos estaciones y mostraron una fuerte asociación con los valores de biomasa 
y stocks de carbono de los pastos marinos. A pesar de su estado degradado, la pradera de pastos marinos de la Isla Tabuhan conserva un 
reservorio de carbono almacenado principalmente en los tejidos subterráneos. Este estudio subraya la necesidad urgente de estrategias 
integradas de gestión costera y conservación para proteger y restaurar estos ecosistemas vulnerables, particularmente en destinos turísticos 
en desarrollo, a fin de mantener las Contribuciones de la Naturaleza a las Personas (CNP), incluida la mitigación del cambio climático.

Palabras clave: Carbono azul, ecosistema costero, monitoreo ambiental, ecología de pastos marinos, impacto del turismo.
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regional ecosystem services, including its potential 
as a blue carbon reservoir. Effective management 
of seagrass ecosystems requires not only docu-
menting their condition but also understanding 
the environmental factors affecting their health. 
Seagrass distribution, growth, and productivity are 
highly sensitive to physical and chemical condi-
tions such as salinity, pH, temperature, dissolved 
oxygen, and hydrodynamic energy (Koch et al. 
2007; Roca et al. 2016). Therefore, characterizing 
natural environmental gradients is a crucial step 
in diagnosing causes of decline and predicting 
ecosystem resilience amid ongoing environmen-
tal changes, including climate change and local 
human impacts (Maxwell et al. 2017). 

This study aimed to fill these gaps by provid-
ing the first comprehensive ecological assessment 
of the seagrass ecosystem around Tabuhan Is-
land. The unique aspect of this work lies in its 
integrated approach: it establishes a quantitative 
baseline of seagrass community structure for this 
emerging tourist destination; offers the first es-
timates of standing biomass and in situ organ-
ic carbon stocks stored within seagrass tissues, 
contributing to regional and global blue carbon 
inventories (Howard et al. 2017); and uses mul-
tivariate statistical analysis to explore patterns 
among measured environmental variables and 
seagrass indicators. Accordingly, this research 
aimed to evaluate the ecological condition of sea-
grass meadows in Tabuhan Island by identifying 
species composition, measuring percent cover 
and shoot density, quantifying standing biomass, 
and estimating organic carbon stored within sea-
grass biomass. Additionally, it sought to examine 
relationships between measured environmental 
parameters and seagrass ecological indicators 
(Grech et al. 2012). By combining structural as-
sessment, functional carbon measurement, and 
environmental diagnostics, this study intended 
to provide a scientific foundation for the sustain-
able management of Tabuhan Island, supporting 
conservation strategies that balance tourism de-
velopment with the preservation of vital Nature’s 

Contribution to People (NCP), including climate 
change mitigation (Nordlund et al. 2018).

MATERIALS AND METHODS

Study area and sampling design

This research was conducted in the coastal of 
Tabuhan Island, a small, uninhabited limestone is-
land covering approximately 5 ha (Figure 1). The 
island is located in the Bali Strait (8° 2′ 13.998" S 
and 114° 26′ 36.965" E), administratively part of 
Bangsring Village, Wongsorejo District, Banyu-
wangi Regency, East Java Province, Indonesia. 
Characterized by a tropical monsoon climate, 
Tabuhan Island has been formally designated as a 
marine tourism zone under local spatial planning 
regulations. The island experiences significant sea-
sonal visitation, with snorkeling being the primary 
recreational activity, leading to concentrated an-
thropogenic pressure in shallow coastal areas.

Field sampling was carried out during the dry 
season, from August to September 2023. A targeted 
sampling approach was employed based on prelim-
inary surveys, which is a method commonly used in 
seagrass ecology to target areas where seagrass is 
known or suspected to exist (Short et al. 2007). Sea-
grass meadows were found only at two coastal sites: 
the northern coast (North Station: 8° 2′ 10.14" S, 
114° 27′ 40.15" E) and the eastern coast (East Sta-
tion: 8° 2′ 11.31" S, 114° 27′ 45.51" E). No seagrass 
was found at the southern and western exposures 
due to strong wave energy from the Indian Ocean, 
consistent with known limitations of seagrass dis-
tribution in high-energy environments (Fonseca and 
Bell 1998). At each station, a 50-m line transect was 
deployed parallel to the shoreline, starting from the 
point where seagrass was first encountered. Along 
each transect, ten 50 × 50 cm (0.25 m2) quadrats 
were placed at approximately 5-m intervals in a 
zig-zag pattern for sampling following standard sea-
grass monitoring protocols (Mckenzie 2003).
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with ice packs, and transported to the laboratory 
within 24 h for further processing.

Environmental parameters were measured at 
each station during sampling. Water quality pa-
rameters (temperature, salinity, pH, and dissolved 
oxygen) were measured in the water column just 
below the surface using a calibrated multi-param-
eter water quality meter (Mediatech TDS). Water 
clarity was assessed as percent brightness using a 
Secchi disk under calm sea conditions (Kirk 2011). 
Substrate type was characterized descriptively at 
each quadrat based on visual and tactile inspection. 
Current velocity data (m s-1) for the sampling pe-
riod were derived from secondary sources, includ-
ing hydrodynamic modeling outputs and remote 
sensing data processed using ArcGIS 10.3 software, 
following established methods for coastal current 
estimation (Klemas 2012).

Laboratory analysis

In the laboratory, seagrass samples were thor-
oughly rinsed with distilled water to remove ep-
iphytes, salts, and residual sediments. Each sam-
ple was carefully separated into above-ground 
biomass (AGB), comprising leaves and sheaths, 

Field data collection

Seagrass community structure was assessed with-
in each quadrat. All seagrass shoots were identified 
to species level and counted to determine shoot 
density. Species identification followed visual mor-
phological characteristics as described in standard 
seagrass identification guides (Den Hartog and Kuo 
2007) and validated against the Seagrass-Watch 
monitoring protocol (Mckenzie 2003). Percentage 
cover for each species was visually estimated using 
a modified Braun-Blanquet scale adapted for sea-
grass studies, where cover classes were defined as: 
0 (absent), + (< 1%), 1 (1-5%), 2 (6-25%), 3 (26-
50%), 4 (51-75%), and 5 (76-100%) (Hemminga 
and Duarte 2000). Station-level percent cover was 
calculated as the average cover across all ten quad-
rats per transect, including quadrats with zero sea-
grass cover. For biomass and carbon analysis, one 
intact individual of each species, including leaves, 
rhizomes, and roots, was carefully excavated from 
each quadrat using a small shovel to minimize sed-
iment disturbance following non-destructive sam-
pling guidelines (Duarte and Kirkman 2001). Sam-
ples were rinsed in situ to remove loose sediments, 
placed in labeled zip-lock bags, stored in a cooler 

Figure 1. Sampling stations in the study area of Tabuhan Island, eastern Java.
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and below-ground biomass (BGB), consisting of 
rhizomes and roots (Fourqurean et al. 2012). The 
components were oven-dried at 60 °C to constant 
weight (approximately 48-72 h) and then weighed 
using an analytical balance (Superior I200, pre-
cision ± 0.01 g) to determine dry weight (DW). 
Biomass for each species per square meter (g DW 
m-2) was calculated by multiplying the average dry 
weight per individual by its corresponding shoot 
density (ind. m-2) (Duarte and Chiscano 1999).

The organic carbon content of the dried seagrass 
biomass was determined using the Loss-on-Igni-
tion method (LOI) (Heiri et al. 2001; Howard et 
al. 2014). Briefly, dried samples were ground into 
a fine powder using a mortar and pestle. Approx-
imately 5 g of homogenized powder from each 
sample (AGB and BGB separately) were placed 
in pre-weighed porcelain crucibles. The crucibles 
were then combusted in a muffle furnace (B-Onc) at 
550 °C for 4 h to oxidize all organic matter (Wang et 
al. 2011). After combustion, crucibles were cooled 
in a desiccator for 45 min and reweighed. The or-
ganic matter content was calculated as the weight 
lost during ignition. Organic carbon content was 
calculated by dividing the organic matter content by 
the conversion factor of 1.724, as per the combus-
tion method outlined by (Helrich 1990). This factor 
corresponds to a carbon content of approximately 
58% in organic matter and aligns with methodolo-
gies used in previous seagrass carbon assessments 
in Indonesia (Supriadi et al. 2014). It is noted that 
alternative protocols, such as those in international 
blue carbon guidelines (Howard et al. 2014) rec-
ommend a conversion factor of 0.34 for seagrass 
biomass. The factor applied here was selected to 
maintain consistency with regional studies. For 
quality control in carbon analysis, the LOI method 
was performed in duplicate for 10% of the samples.

Data calculation and analysis

Seagrass percent cover was classified into condi-
tion categories according to the Indonesian Minister 
of Environment Decree No. 200/2004 on standard 

criteria for seagrass damage assessment (Ministry 
of Environment 2004) as ‘Good/Rich/Healthy’ (< 
60%), ‘Damaged/Less Rich/Less Healthy’ (30-
59.9%), and ‘Poor’ (< 29.9%).

Seagrass shoot density was categorized accord-
ing to the density-based condition scale adapted 
from Rahadiarta et al. (2019) (Table 1).

Seagrass density (D, shoots m-2) for each species 
was calculated according to Supriadi et al. (2014) 
as:

D = 
∑ Ni 

A

where Ni is the total number of shoots of species i 
and A is the total sampled area (m2). Seagrass bio-
mass was estimated following Duarte et al. (2013) 
as:

B = W × D 

where B is the biomass of seagrass species i (g DW 
m-2) and W is the average dry weight per individual 
of species i (g DW). Total biomass per station was 
calculated as the sum of the above-ground biomass 
(AGB) and below-ground biomass (BGB) across 
all species. The ash content was calculated as:

Ash content (%) = 
c − a 

× 100
b − a

where a is the weight of crucible (g), b is the weight 
of crucible + dried sample (g), and c is the weight 
of crucible + ash after combustion (g).

Organic matter content was then derived from:

Organic matter (%) = 
(b − a) − (c − a) 

× 100
b − a

Finally, organic carbon content was estimated 
using the Van Bemmelen conversion factor:
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Organic carbon (%) = 
Organic matter content

1.724

where 1.724 is the conventional factor assuming 
organic matter contains 58% carbon (Helrich 1990).
Measured environmental parameters (temperature, 
pH, DO, salinity) were compared to the seawater 
quality standards set by the Government of Indo-
nesia (Government of Indonesia 2021) to assess 
compliance. To identify the key environmental 
drivers influencing seagrass biomass and carbon 
stocks, a multivariate statistical analysis was per-
formed. Principal Component Analysis (PCA) was 
conducted using Minitab Statistical Software (ver-
sion 22). The PCA was employed to synthesize the 
environmental and biological dataset and explore 
patterns of variability among stations and variables. 
The analysis included seven environmental vari-
ables (temperature, DO, pH, salinity, brightness, 
current velocity, substrate type) and one biologi-
cal response variable (total seagrass biomass). The 
PCA reduces the dimensionality of the dataset to 
principal components (PCs) that explain the max-
imum variance, allowing visualization of patterns 
and correlations between variables and sampling 
stations (Legendre 2019). A scree plot was used to 
determine the number of significant PCs to retain 
for interpretation (Jackson 1993). 

RESULTS

Environmental conditions at sampling stations

In situ measurements revealed distinct envi-
ronmental conditions between the two sampling 
stations. The East Station recorded a higher mean 
water temperature (29.45 ± 0.26 °C) compared to 
the North Station (28.83 ± 0.38 °C). Conversely, 
salinity was higher at the North Station (29.80 ± 
0.33) than at the East Station (27.87 ± 0.37). Both 
stations exhibited slightly alkaline pH levels, with 

near-identical values of 8.23 and 8.22, respectively. 
Dissolved oxygen (DO) was marginally higher at 
the East Station (6.09 ± 0.18 mg l-1) compared to 
the North Station (5.50 ± 0.15 mg l-1). Water bright-
ness was 100% at both locations during morning 
measurements. Model-derived current velocities 
were nearly identical at both stations (~ 0.56 m s-1), 
indicating similar hydrodynamic exposure. The 
substrate at both sites was predominantly com-
posed of coral rubble mixed with coarse sand.

Seagrass species composition and community 
structure

Field surveys identified a total of four seagrass 
species across the study area, representing two 
families (Table 1). All four species were present at 
both the North and East Stations. Cymodocea ro-
tundata and Enhalus acoroides were visually dom-
inant in terms of frequency of occurrence within 
quadrats. Total coverage was very low, measuring 
0.46% at the North Station and 0.45% at the East 
Station (Table 2).

Both meadows are classified as ‘Poor’ by the In-
donesian Minister of Environment Decree (Minis-
try of Environment 2004) (≤ 29.9%). At the species 
level, C. rotundata contributed the most to cover at 
the East Station (0.36%), while E. acoroides was 
highest at the North Station (0.19%). The shoot 
density mirrored the cover results, with total den-
sity being extremely sparse: 0.018 shoots m-2 at 
the North Station and 0.017 shoots m-2 at the East 

Table 1. Seagrass condition scale based on shoot density 
(shoots m-2).

Scale	 Density 	 Condition

5	 > 625	 Very dense
4	 425-625	 Dense
3	 225-424	 Moderately sparse
2	 25-224	 Sparse
1	 < 24	 Very sparse
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Station. Based on established density categories, 
this qualifies as ‘Very Sparse’ (< 24 shoots m-2). 
Cymodocea rotundata showed the highest density 
at the East Station (0.014 shoots m-2).

Seagrass biomass and carbon stocks

Based on the biomass calculations, the highest 
above-ground biomass (AGB) was observed for 
Thalassia hemprichii at the North Station (0.002 g 
DW m-2), followed by C. rotundata at the East 
Station (0.001 g DW m-2) (Figure 2). Halophila 
ovalis at the East Station exhibited the lowest over-
all AGB value (0.0003 g DW m-2). Below-ground 
biomass (BGB) followed a similar distribution pat-
tern. The highest BGB was found in C. rotundata 
at the East Station (0.006 g DW m-2), followed by 
E. acoroides at the North Station (0.004 g DW m-2). 
Enhalus acoroides at the East Station exhibited the 
lowest overall BGB value (0.002 g DW m-2). Total 
seagrass biomass was low at both stations, with the 
East Station recording slightly higher total biomass 
(0.011 g DW m-2) than the North Station (0.010 g 
DW m-2). Below-ground biomass constituted the 
majority of total biomass, accounting for approx-
imately 80% of the total, while AGB contribut-
ed only 20%. Among species, E. acoroides at the 
North Station exhibited the highest below-ground 
biomass (0.004 g DW m-2).

Environmental and biological drivers

The PCA considered all measured environmental 
variables, though brightness was uniform (100% 
at both stations) and substrate type was categor-
ical; thus, these do not appear in the loading plot 
but were included in the analysis. The loading plot 
revealed that PC1 was strongly and positively as-
sociated with salinity and current velocity, while 
PC2 showed strong positive loadings for seagrass 
biomass, carbon stock, and pH (Figure 3). Vari-
ables such as temperature and dissolved oxygen 
exhibited weaker or orthogonal relationships with 
these components, suggesting a lesser direct in-
fluence on the observed seagrass patterns under 
current conditions.

DISCUSSION

The findings of this study reveal that the sea-
grass meadows of Tabuhan Island are in a state 
of ecological degradation. Their percent cover (≤ 
0.5%) and shoot density (< 0.02 shoots m-2) are 
significantly lower than those reported for healthy 
meadows in nearby Indonesian regions such as the 
Seribu Islands (> 60% cover, > 100 shoots m-2; 
Ambo-Rappe et al. 2019; Hernawan et al. 2021), 

Table 2. Seagrass coverage (%) and seagrass shoot density (shoots m-2) at the North and East Stations in Tabuhan Island. Condi-
tion of meadows are according to the Ministry of Environment (2004) (ME2004), and Rahadiarta et al. (2019) (RA2019).

	 North Station	 East Station	 Condition of meadows 	

Species	 Coverage	 Shoot density	 Coverage	 Shoot density	 (ME2004)	 (RA2019)

Cymodocea rotundata	 0.18	 0.007	 0.36	 0.014	 Poor	 Very sparse
Halophila ovalis	 0.05	 0.002	 0.05	 0.002	 Poor	 Very sparse
Enhalus acoroides	 0.19	 0.008	 0.03	 0.001	 Poor	 Very sparse
Thalassia hemprichii	 0.04	 0.001	 0.01	 0.0002	 Poor	 Very sparse

Total	 0.46	 0.018	 0.45	 0.017	 Poor	 Very sparse
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indicating severe habitat decline and limited bio-
mass and carbon stocks. These conditions are 
consistent with seagrass ecosystems experiencing 
chronic anthropogenic pressure, particularly in 
small island settings where tourism activities are 
concentrated (Unsworth et al. 2019; Baltranaitė et 
al. 2025). These values are orders of magnitude 
below the ‘Poor’ classification threshold of Indo-
nesia’s environmental standards (Ministry of Envi-
ronment 2004) and align with global observations 
of declining seagrass coverage in tourism-affected 
coastal zones (Waycott et al. 2009; Dunic et al. 
2021). For context, healthy meadows in nearby 
regions of Indonesia, such as the Seribu Islands, 
typically exhibit covers exceeding 60% and densi-
ties over 100 shoots m-2 (Ambo-Rappe et al. 2019; 
Hernawan et al. 2021b).

The community is dominated by C. rotundata, a 
disturbance-tolerant species, while more sensitive 
species, such as E. acoroides and T. hemprichii, 
are present only in sparse numbers. This species 
composition, where stress-tolerant taxa dominate 
and sensitive taxa are rare, is consistent with pat-
terns observed in other seagrass ecosystems expe-
riencing chronic anthropogenic pressure (Marbà 
et al. 2015; McKenzie et al. 2020). This degraded 
condition is not an isolated phenomenon, but mir-

rors trends observed in other small island tourism 
destinations across Southeast Asia, where unman-
aged recreational activities directly contribute to 
habitat fragmentation and loss (Jones et al. 2022). 
The proximate cause of this decline is most likely 
the intense and localized anthropogenic pressure 
from marine tourism. Tabuhan Island, as a focal 
point for daily snorkeling and boating, is subject to 
physical damage from anchor drops, propeller scar-
ring, and tourist trampling, all documented agents 
of seagrass meadow degradation (Creed et al. 1999; 
Unsworth et al. 2019). Unlike gradual stressors like 
nutrient pollution, physical destruction causes im-
mediate and often irreversible loss of above-ground 
tissue and can destabilize the sediment, hindering 
recovery (Creed et al. 1999; Erftemeijer and Lewis 
2006; Unsworth et al. 2019). This creates a ‘neg-
ative footprint’ where the very activity that drives 
the local economy simultaneously erodes the nat-
ural capital that sustains it.

A key finding of this study is the pronounced 
allocation of biomass and carbon to below-ground 
tissues (~ 80% of total). This ratio exceeds the 40-
60% below-ground allocation typically reported 
for healthy tropical seagrass meadows (Duarte and 
Chiscano 1999; Fourqurean et al. 2012), providing 
quantitative evidence of a stress response where 

Figure 2. Carbon stock in seagrass biomass by species and station partitioned into above-ground biomass (AGB) and below-ground 
biomass (BGB). The Y-axis represents biomass in g C m-2, with AGB shown as the upper segment of each bar and BGB 
as the lower segment. Cr: Cymodocea rotundata, Th: Thalassia hemprichii, Ho: Halophila ovalis, Ea: Enhalus acoroides. 
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resources are prioritized to anchorage and storage 
organs. Under conditions of physical disturbance, 
herbivory, or nutrient limitation, seagrasses often 
invest more resources into below-ground struc-
tures to enhance anchorage, storage, and resilience 
(Fourqurean et al. 2012; Olsen et al. 2012). Similar 
patterns have been reported in seagrass meadows 
exposed to boat traffic and trampling, where be-
low-ground biomass serves as a critical reserve for 
regrowth (Peralta et al. 2000; Garrard and Beau-
mont 2014). This morphological strategy may par-
tially explain the persistence of seagrass in Tabuhan 
Island despite evident anthropogenic pressure.

Carbon stocks measured in this study are or-
ders of magnitude lower than those reported from 
healthier Indonesian meadows, such as ~ 250 g 
C m-2 in Bintan Island (Hernawan et al. 2021) 
and ~ 180 g C m-2 in the Spermonde Archipela-
go (Ambo-Rappe et al. 2019). This discrepancy 
underscores the impact of habitat degradation on 
carbon sequestration capacity. Degraded meadows 
not only store less carbon but may also experience 
reduced sediment carbon accumulation due to ero-
sion and rhizome exposure (Lovelock and Duarte 

2019; Macreadie et al. 2021). Nevertheless, the fact 
that carbon is still stored, primarily below-ground, 
highlights the continued, albeit diminished, role of 
these meadows as blue carbon sinks. This finding 
supports the argument that even degraded seagrass 
systems warrant conservation attention for their 
climate mitigation potential (Howard et al. 2014; 
Röhr 2019).

It is important to note that this study quantified 
carbon stored in seagrass biomass only. In sea-
grass ecosystems, most carbon is typically stored 
in the underlying sediments, which can represent a 
long-term reservoir spanning centuries to millennia 
(Fourqurean et al. 2012; Macreadie et al. 2021). 
Our biomass carbon estimates therefore represent 
only a fraction of the total carbon stock ecosys-
tem. Future research should include sediment core 
sampling to quantify the full blue carbon potential 
of Tabuhan Island’s seagrass meadows, particular-
ly given that degraded meadows may experience 
sediment carbon loss through erosion (Lovelock 
and Duarte 2019).

The low seagrass metrics observed in Tabuhan 
Island, percent cover, shoot density, and standing 

Figure 3. Biplot of principal component analysis (PCA). The first component (PC1, x-axis) is primarily associated with salinity 
and current velocity, while the second component (PC2, y-axis) is strongly influenced by pH and seagrass carbon stock. 
Vector direction indicates variable correlation with each component; vector length represents the strength of contribution. 
Variable units: current velocity (m s-1), temperature (°C), dissolved oxygen (DO) (mg l-1), salinity carbon stock (g C m-2).
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biomass,are likely compounded by tourism-related 
impacts. Snorkeling, anchoring, and trampling can 
directly damage shoots, reduce light penetration 
via sediment resuspension, and fragment rhizome 
networks (Unsworth et al. 2019). Previous studies 
in similar tropical tourism destinations have docu-
mented reduced seagrass cover and altered species 
composition in high-visitation areas (Franco et al. 
2013). Without management intervention, contin-
ued pressure may diminish seagrass resilience and 
carbon storage function. This study provides the 
first quantitative baseline of seagrass structure and 
carbon stocks for Tabuhan Island, filling a critical 
knowledge gap for this emerging tourist destina-
tion. The integration of ecological metrics offers a 
replicable framework for assessing seagrass con-
dition in data-limited regions. 

The demonstration of measurable, though lim-
ited, carbon storage reinforces the importance of 
including seagrass ecosystems in local and region-
al blue carbon strategies, even when their above-
ground coverage appears marginal (Duarte et al. 
2013). While this study provides the first quan-
titative baseline for seagrass on Tabuhan Island, 
certain limitations must be acknowledged. The 
assessment was conducted during the dry season 
(August-September) and is thus a temporal snap-
shot; seasonal variations in monsoon rainfall, water 
quality, and seagrass growth dynamics were not 
captured (Erftemeijer 1993). Furthermore, the spa-
tial replication was limited to two stations where 
seagrass was found, which restricts our ability to 
generalize conditions across the entire island’s 
coastline. However, these stations were purposively 
selected to represent the only identifiable meadows 
under active tourism pressure, and the integrated 
methodological approach (structural, functional, 
and environmental) provides a robust and replica-
ble framework for future monitoring efforts. Future 
studies would benefit from seasonal sampling and a 
broader spatial survey to better understand the full 
extent and temporal dynamics of Tabuhan Island’s 
seagrass ecosystems (Grech et al. 2012; Maxwell 
et al. 2017).

CONCLUSIONS

This study establishes the first ecological base-
line for the seagrass meadows of Tabuhan Island, 
confirming a system in a state of severe degrada-
tion driven predominantly by unmanaged tourism. 
Despite critically low structural integrity, the persis-
tence of below-ground biomass and residual carbon 
storage signals latent ecological resilience and a bio-
logical foundation for potential recovery. Multivar-
iate analysis highlighted patterns among the meas-
ured environmental variables, though these subtle 
gradients are overshadowed by the dominant im-
pact of physical disturbance from tourism activities. 
Consequently, effective management must prioritize 
direct mitigation of anthropogenic pressures, such as 
anchor damage and trampling, while maintaining en-
vironmental monitoring to detect any compounding 
effects of water quality or hydrodynamic changes.

The findings translate into clear management pri-
orities: immediate implementation of protective 
measures like mooring buoys and visitor zoning; 
establishment of a long-term monitoring program 
based on the parameters validated here; and ex-
ploration of community-involved restoration that 
utilizes the remaining below-ground network. By 
aligning tourism development with evidence-based 
conservation, Tabuhan Island can pursue a sus-
tainable pathway where economic and ecological 
objectives are mutually supportive rather than 
conflicting. This research provides the necessary 
scientific foundation to inform such integrated 
coastal management, emphasizing that even de-
graded seagrass systems retain ecological value 
and recovery potential if timely and informed in-
tervention is applied.
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