

REVIEW

Reproductive strategies of benthic macroinvertebrates at the Argentine shelf-break front, southwestern Atlantic Ocean

LAURA SCHEITER^{1,2,*}, CLAUDIA S. BREMEC², MARIANA ESCOLAR¹, GABRIEL N. GENZANO^{2,3}, DIEGO A. GIBERTO^{1,2}, MARIELA PAVÓN NOVARIN^{1,2} and MARCOS TATIÁN^{2,4}

¹Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo N° 1, B7602HSA - Mar del Plata, Argentina.

²Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. ³Universidad Nacional de Mar del Plata e Instituto de Investigaciones Marinas y Costeras (IIMyC-CONICET), Juan B. Justo 2550, B7608FBY - Mar del Plata - Buenos Aires - Argentina.

⁴Instituto de Diversidad y Ecología Animal (IDEA-CONICET), Universidad Nacional de Córdoba, Velez Sarsfield 299, X5000JJC - Córdoba, Argentina. ORCID *Laura Scheiter* <https://orcid.org/0000-0001-5443-4048>, *Claudia S. Bremec* <https://orcid.org/0000-0001-5342-7997>, *Mariana Escolar* <https://orcid.org/0000-0003-4476-8663>, *Gabriel N. Genzano* <https://orcid.org/0000-0002-9818-7648>, *Diego A. Giberto* <https://orcid.org/0009-0003-5664-3910>, *Mariela Pavón Novarin* <https://orcid.org/0000-0002-2963-2496>, *Marcos Tatián* <https://orcid.org/0000-0002-9092-9184>

*Correspondence:
scheiter@inidep.edu.ar

Received: 23 October 2025
Accepted: 30 January 2026

ISSN 2683-7595 (print)
ISSN 2683-7951 (online)

<https://ojs.inidep.edu.ar>

Journal of the Instituto Nacional de
Investigación y Desarrollo Pesquero
(INIDEP)

This work is licensed under a Creative
Commons Attribution-
NonCommercial-ShareAlike 4.0
International License

ABSTRACT. The Argentine shelf-break front is of high ecological and economic importance and supports diverse benthic communities and key life-history processes of several commercial species. This study provides the first comprehensive synthesis of reproductive traits among benthic invertebrates inhabiting this area of the southwestern Atlantic Ocean (80-120 m depth). Information was compiled for 126 epibenthic species belonging to Porifera, Cnidaria, Annelida, Mollusca, Brachiopoda, Echinodermata, Arthropoda, Bryozoa, and Chordata (> 1 cm) from published sources, aiming to identify the dominant reproductive strategies that sustain populations persistence over time. Species-specific reproductive data were available for only 47% of the taxa, and for only five species (~ 4%) such information derived from specimens collected at the shelf-break front itself. Despite data gaps and the need for extrapolation from related taxa or regions, this synthesis reveals predominant reproductive patterns among benthic invertebrates and provides essential baseline knowledge for ecosystem-based management. Approximately 68% of the species are gonochoric, although most sponges and all ascidians are hermaphroditic, while 43% can reproduce asexually or have the ability of regeneration. Internal fertilization predominates (71%), while all bivalves and polychaetes reproduce by external fertilization. Parental care, defined as any kind of protection of embryos through incubation or encapsulation, occurs in 61% of the species, being universal among crustaceans and frequent in gastropods (89%). Indirect development characterizes 82% of the species, of which 59% produce lecithotrophic larvae and 33% planktotrophic larvae. Understanding reproductive modes and dispersal capacities is crucial to assess connectivity, resilience, and vulnerability of benthic communities in the Argentine shelf-break front.

Key words: Benthic communities, reproduction, larval dispersion, parental care, Argentina.

Estrategias reproductivas de macroinvertebrados bentónicos en el frente del talud argentino, Océano Atlántico Sudoccidental

RESUMEN. El frente del talud continental argentino es de gran importancia ecológica y económica, y sustenta diversas comunidades bentónicas y procesos clave del ciclo de vida de varias especies comerciales. Este estudio proporciona la primera síntesis exhaustiva de los rasgos reproductivos entre los invertebrados bentónicos que habitan esta área del Océano Atlántico Sudoccidental (80-120 m de profundidad). Se recopiló información para 126 especies epibentónicas (> 1 cm) pertenecientes

a los Phyla Porifera, Cnidaria, Annelida, Mollusca, Brachiopoda, Echinodermata, Arthropoda, Bryozoa y Chordata a partir de fuentes publicadas, con el objetivo de identificar las estrategias reproductivas dominantes que sustentan la persistencia de las poblaciones a lo largo del tiempo. Los datos reproductivos específicos de cada especie estaban disponibles solo para el 47% de los taxones, y para solo cinco especies (~ 4%) dicha información provino de especímenes colectados en el propio frente del talud. A pesar de la falta de datos y la necesidad de extrapolación a partir de taxones o regiones relacionadas, esta síntesis revela patrones reproductivos predominantes entre los invertebrados bentónicos y proporciona conocimientos básicos esenciales para la gestión ecosistémica. Aproximadamente el 68% de las especies son gonocóricas, aunque la mayoría de las esponjas y todas las ascidias son hermafroditas, mientras que el 43% puede reproducirse asexualmente o tiene la capacidad de regenerarse. Predomina la fecundación interna (71%), mientras que todos los bivalvos y poliquetos se reproducen por fecundación externa. El cuidado parental, definido como cualquier tipo de protección de los embriones mediante incubación o encapsulación, ocurre en el 61% de las especies, siendo universal entre los crustáceos y frecuente en los gasterópodos (89%). El desarrollo indirecto caracteriza al 82% de las especies, de las cuales el 59% produce larvas lecitotróficas y el 33% larvas planctotróficas. Comprender los modos reproductivos y las capacidades de dispersión es crucial para evaluar la conectividad, la resiliencia y la vulnerabilidad de las comunidades bentónicas en el frente del talud continental argentino.

Palabras clave: Comunidades bentónicas, reproducción, dispersión larval, cuidado parental, Argentina.

INTRODUCTION

Understanding how organisms maintain populations over time within a given marine area requires consideration of both environmental variables (e.g. temperature, salinity, substrate type) and intrinsic biological factors, such as food availability, recruitment, larval supply from nearby populations, and their variability (Caley et al. 1996; Todd 1998; Ostrovsky 2021). Species employ a variety of strategies to persist, often involving seasonal changes and responses to natural or anthropogenic disturbances. Reproductive strategies and modes have been the focus of extensive research worldwide, enabling the identification of patterns across taxonomic groups and environments, and shedding light on traits that make certain species more sensitive or better adapted to specific conditions (e.g. Thorson 1950; Vance 1973; Jackson 1983; Ostrovsky 2021). In this context, organisms may colonize and persist in a given environment by employing both sexual and asexual reproductive strategies. Special attention must be paid to the most vulnerable stages in the life cycle, which often occur during reproduction and larval development, when species' requirements are most critical (Thorson 1950; Wangersteen et al. 2017). A study by Thorson (1950),

for example, identified broad biogeographic patterns in reproductive traits, noting a prevalence of planktotrophic development in tropical waters and a higher frequency of brooding species in polar and deep-sea environments, potentially linked to food availability. Numerous ecological models have since been developed to evaluate the relative importance of pre- and post-settlement processes and to distinguish between open and closed population structures (e.g. Caley et al. 1996; Todd 1998; Fraschetti et al. 2003). These approaches provide essential insights into the persistence and dynamics of marine ecosystems across biogeographic regions.

The diversity of life cycles among organisms that reproduce sexually can, in broad terms, be classified into two main reproductive strategies. The first, which is the most common across taxa and species, involves the production of many offspring without any form of parental care. The second strategy entails the allocation of a portion of the available resources toward parental care (Giangrande et al. 1994; Ostrovsky 2021). Within these two predominant strategies, a wide range of reproductive variants can be found. These include: species capable of releasing hundreds or thousands of gametes into the environment, where external fertilization occurs and is typically followed by the development of a planktotrophic larva (which feeds on plankton during development); species that retain female

gametes within the parental body, where internal fertilization occurs upon the entry of male gametes, followed by the release of either planktotrophic or lecithotrophic larvae (the latter relying solely on yolk-derived nutrients); oviposition of embryos or larvae by females, often accompanied by the formation of gelatinous masses, dense capsules, or cocoons that provide a degree of protection during development and, in other cases, internal incubation of embryos within the adult body, with juveniles being released directly into the environment (Thorson 1950; Mileikovsky 1971; Giangrande et al. 1994; Ostrovsky 2021).

The number of eggs, larvae or offspring produced by benthic invertebrates varies widely among species and across geographic regions. Consequently, their dispersal potential also differs substantially. Species that produce large numbers of planktotrophic larvae are generally associated with greater dispersal capacity, allowing them to colonize new environments due to the extended duration of their planktonic larval stage, which can last from several weeks to months. In contrast, species that produce fewer but larger offspring, such as lecithotrophic larvae or encapsulated embryos, tend to have higher survival rates but more limited dispersal capabilities (Mileikovsky 1971; Strathmann 1978, 1985).

In sessile or low-mobility organisms such as cnidarians, sponges, bryozoans and some mollusks, the ability of larvae or juveniles to locate suitable habitats for settlement and development is a key determinant of reproductive success and survival (e.g. Roberts et al. 1991; Altieri 2003; Maldonado 2006; Bremec et al. 2008). Settlement often occurs in areas where food is more abundant or where the risk of predation is lower. In some cases, proximity to conspecifics or other organisms may enhance survival, while in others it may hinder it due to increased competition for space or resources (Jackson 1983).

The Argentine shelf-break front is a dynamic region where continental shelf waters converge with those of the Malvinas Current, forming a perma-

gent thermohaline front (Acha et al. 2004; Piola et al. 2024). This area exhibits high seasonal primary productivity (Dogliotti et al. 2014; Guinder et al. 2024), which is also associated with elevated zooplankton concentrations observed during summer and early autumn (Sabatini and Álvarez Colombo 2001; Cepeda et al. 2024). These conditions are optimal for the feeding and/or reproduction of nektonic species such as fishes and squids (Alemany et al. 2024). Furthermore, the shelf-break front may act as a retention area for the larvae of both fish (i.e. Ehrlich et al. 2025) and benthic species (i.e. Mauna et al. 2008; Torres Alberto et al. 2025), thus favoring the establishment of adult populations. Several of Argentina's most economically important species, such as the Argentine hake (*Merluccius hubbsi*), the shortfin squid (*Illex argentinus*), the Argentine anchovy (*Engraulis anchoita*) and the Patagonian scallop (*Zygochlamys patagonica*), occur in this region and carry out key life-history processes here (Schejter et al. 2017a; Giberto et al. 2024).

Benthic communities of the shelf-break front region, particularly between 80 and 120 m depth, are dominated by the Patagonian scallop, along with other benthic invertebrates such as echinoderms, sponges, gastropods, and crustaceans (Bremec et al. 2003; Schejter et al. 2017a; Campodónico et al. 2019; Giberto et al. 2024). These benthic assemblages have been extensively studied in recent decades through the analysis of bycatch from bottom trawl fisheries, mainly targeting the Patagonian scallop and the Argentine hake (Gaitán et al. 2014; Schejter et al. 2017a, 2024; Gaitán and Souto 2020).

The overarching goal of the study is to identify dominant reproductive strategies employed by benthic invertebrates in the Argentine shelf-break region, southwestern Atlantic Ocean, that enable the persistence of their populations and communities over time. In this sense, particular objectives are: 1) to compile available information on the reproductive modes of the most common invertebrate species inhabiting the Argentine shelf-break front

between 37° and 45° S and at 80 to 120 m depths, approximately; 2) to identify main reproductive strategies employed by benthic invertebrates in this region enabling the persistence and maintenance of their populations and communities over time, and 3) to determine which species potentially exhibit the highest and lowest dispersal capacities. This information is particularly relevant in the context of global change and may contribute to management strategies for ecosystems exposed to current and potential anthropogenic pressures (i.e. fisheries, hydrocarbon exploitation).

MATERIALS AND METHODS

Study area

The study area is located along the slope front of the southwestern Atlantic Ocean, between approximately 37° and 45° S and at depths ranging from 80 to 120 m depth. The region encompassing the shelf-break front is primarily characterized by soft-bottom habitats, mostly sandy substrates, as is the case for much of the Argentine continental shelf (Parker et al. 1997). At approximately 100 m depth, bottom water temperatures typically range between 6 and 8 °C. Salinity values vary from 33.7 to 34.0 in the outer portion of the front, while more shelf-influenced inner areas can present salinities as low as 33.4. During autumn and winter, thermoclines and pycnoclines are disrupted by vertical mixing driven by convective processes, resulting in bottom water temperatures that are approximately 1-2°C higher (Guerrero and Piola 1997).

This region is primarily influenced by the northward-flowing Malvinas Current (Figure 1). Within this area, particle transport occurs in the direction of the prevailing current, and vertical fluxes have been described that may facilitate benthic-pelagic coupling (Franco et al. 2017; Piola et al. 2024). In this area, main fishing grounds of the Patagonian scallop *Z. patagonica* are located.

Bibliographic sources

A comprehensive literature search was performed to gather published information relevant to each species or faunal group. Searches were conducted in multiple scientific databases and platforms, including ASFA (Aquatic Sciences and Fisheries Abstracts), Academia.edu, PubMed, Scopus, Web of Science, JSTOR, and Google Scholar, to maximize coverage. To complement database searches, we also queried ChatGPT (OpenAI) with same targeted prompts to identify other potential literature sources. All suggestions were manually verified (see Ruksakulpiwat et al. 2024). Search strategies combined keywords and prompts of ChatGPT including each species names in combination with the following terms: 'larvae', 'reproduction', 'fecundity', 'larval development', 'incubation', 'embryo', and 'parental care'. We considered peer-reviewed articles, books, technical reports, and gray literature relevant to each taxonomic group, with no restrictions on publication date or language. In cases where species-specific reproductive data were unavailable, reproductive modes were inferred based on information from related species at the genus, family, or higher taxonomic levels.

RESULTS

Information on the reproductive strategies of 126 epibenthic invertebrate species (typically bigger than 1 cm) recorded in this region was compiled (Appendix, Table A1).

A total of 55 species (approximately 44%) exhibit some form of asexual reproduction or regeneration (Table 1). Regarding sexual reproduction, sixty-eight percent (68%) of the species are gonochoric (with separate sexes), although the *Ascidacea* group is entirely composed of hermaphroditic organisms; most sponge species are also hermaphroditic (Table 2). Internal fertilization occurs in

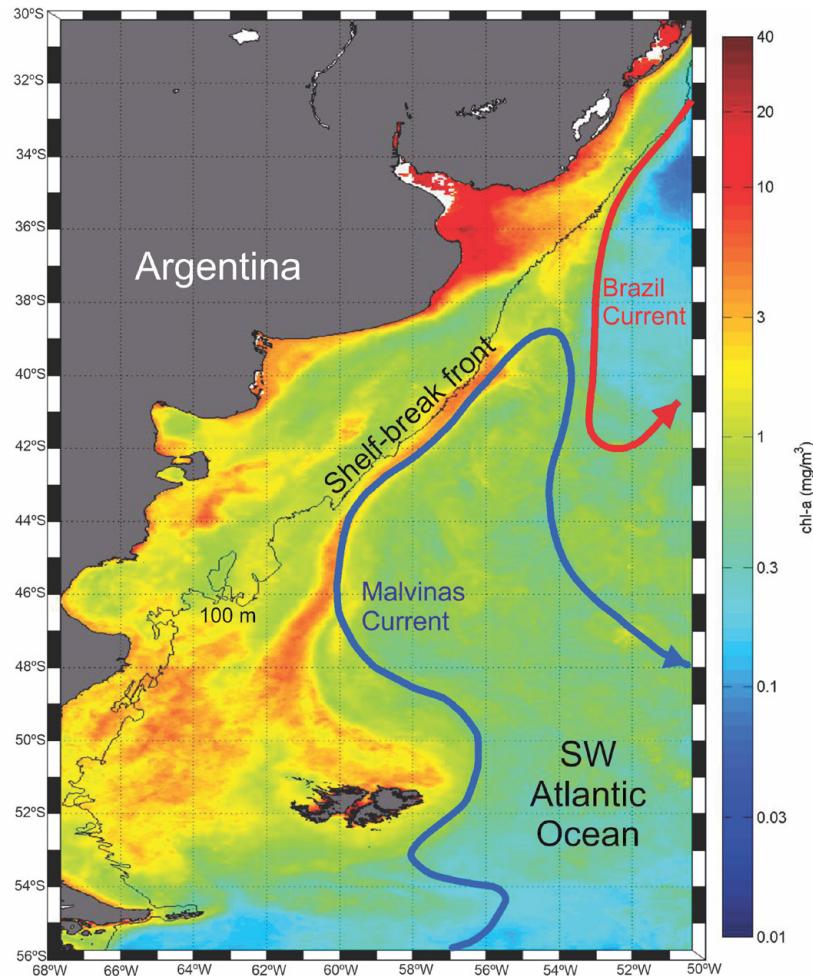


Figure 1. Study area: location of the shelf-break front in Argentina. The image shows monthly averages of chlorophyll-*a* concentration derived from MODIS-Aqua satellite images for the period January-March 2024 (data obtained from <https://oceandata.sci.gsfc.nasa.gov>; 2022). The circulation of the main surface ocean currents (Brazil Current in red and Malvinas Current in blue) was digitized and vectorized in QGIS 3.40 using geospatial analysis tools, based on Franco et al. (2018). Courtesy of the Remote Sensing Program, INIDEP.

71% of the species (Table 3). All bivalves included in this study as well as polychaete species (Annelida) reproduce by external fertilization, although in some tube-dwelling polychaetes, fertilization may occur externally within the tube water, followed by parental care and embryo incubation on radioles or opercula, depending on the taxon (see more detailed information below, within Annelida).

With regard to parental care, in this study it is considered that a species exhibits parental care

when the parent protects at least part of the embryonic development of its offspring either through incubation within the body or by providing some type of egg capsule that protects early embryonic stages, regardless of whether larvae or juveniles hatch from it. Based on this criterion, 61% of the species included in this study exhibit some form of parental care (Table 4). Among them, crustaceans (Malacostraca) stand out, with 100% of the species studied showing parental care, followed by

Table 1. List of taxa (N = 126) according to their reproductive capabilities, arranged in alphabetical order. RS: sexual reproduction; RS-RA: sexual and asexual reproduction.

Phylum	Class	RS	RS-RA	Total
Annelida	Polychaeta	2	5	7
Arthropoda	Malacostraca	11		11
	Thecostraca	2		2
	Pycnogonida	1		1
Brachiopoda	Rhynchonellata	3		3
Bryozoa	Gymnolaemata		6	6
	Stenolaemata		1	1
Chordata	Asciidae	2	3	5
Cnidaria	Hexacorallia	3	4	7
	Hydrozoa		11	11
	Octocorallia	1	1	2
Echinodermata	Asteroidea	10		10
	Crinoidea		1	1
	Echinoidea	5		5
	Holothuroidea	2		2
	Ophiuroidea	5		5
Mollusca	Bivalvia	5		5
	Gastropoda	19		19
Porifera	Calcarea		1	1
	Demospongiae		22	22
Total		71	55	126

gastropods with 89%. On the other hand, 21% of the species do not exhibit any type of parental care, while for another 18%, no adequate information was found in the literature to assess this parameter (Table 4). Finally, 82% of the species exhibit an indirect life cycle with a larval stage. Of these, 59% produce lecithotrophic larvae, 33% planktotrophic larvae, and for the remaining species, the larval type remains unknown (Table 5).

It is important to note that species-specific reproductive information is available for only 47% of the studied species (Table 6). Moreover, the available data are highly heterogeneous and range from complete reproductive cycles to isolated observations of particular parameters. In this study,

it is considered that there is species-specific information if there is at least one piece of data on embryo incubation, larvae, or some other reproductive parameter. Only five species (~ 4%), namely the scallop *Z. patagonica*, the bivalve *Hiatella umbo-nata*, the gastropod *Coronium acanthodes*, the hermit crab *Sympagurus dimorphus*, and the sea cucumber *Psolus patagonicus*, have reproductive studies or data derived from specimens collected specifically in the shelf-break front region. For the remaining species, the species-specific information was compiled from studies conducted in other environments (e.g. deep slope, Argentine Patagonian coast and gulfs, Chile, or Antarctica).

Table 2. Information on the reproductive system of the studied taxa (N = 126), arranged in alphabetical order. GO: gonochoric; HE: hermaphroditic; HE-GO: both reproductive modes; SD: no data.

Phylum	Class	GO	HE	HE-GO	SD	Total
Annelida	Polychaeta	4	3			7
Arthropoda	Malacostraca	11				11
	Pycnogonida	1				1
	Thecostraca	1	1			2
Brachiopoda	Rhynchonellata	3				3
Bryozoa	Gymnolaemata		6			6
	Stenolaemata			1		1
Chordata	Asciidae		5			5
Cnidaria	Hexacorallia	7				7
	Hydrozoa	11				11
	Octocorallia	1			1	2
Echinodermata	Asteroidea	10				10
	Crinoidea	1				1
	Echinoidea	5				5
	Holothuroidea	2				2
	Ophiuroidea	5				5
Mollusca	Bivalvia	4	1			5
	Gastropoda	15	4			19
Porifera	Calcarea				1	1
	Demospongiae	5	16		1	22
Total		86	36	1	3	126

Detailed reproductive traits by taxonomic group

Porifera

Over 50 sponge species have been recorded in the study area, and their occurrence is strongly dependent on the availability of suitable substrate, often provided by other benthic organisms or their remains (Schejter et al. 2025). For the purposes of this investigation, we considered 23 sponge species that are probably the most representative and frequently recorded. Reproductive timing in sponges is highly variable, ranging from restricted periods to continuous reproduction throughout the year, depending on intrinsic genetic factors and environmental conditions such as primary produc-

tion blooms (Maldonado 2006). Although specific reproductive data for sponge species in the shelf-break front region are limited, it is expected that they share characteristics with closely related taxa from other regions.

Only one species from the class Calcarea has been recorded in the area, *Sycon* sp. (Schejter and Bremec 2007), a group known to produce amphi-blastula larvae (Maldonado 2006). The remaining recorded species belong to the class Demospongiae, with nearly half of them belonging to the order Poecilosclerida, which is the largest order of sponges concerning the numbers of families and genera. These are generally ovoviviparous (with embryos that develop inside their body tissues in a variable

Table 3. Fertilization type in the studied taxa (N = 126). FE: external fertilization; FI: internal fertilization; SD: no data.

Phylum	Class	FE	FI	SD	Total
Annelida	Polychaeta	7			7
Arthropoda	Malacostraca		11		11
	Pycnogonida	1			1
	Thecostraca		2		2
Brachiopoda	Rhynchonellata		3		3
Bryozoa	Gymnolaemata	1	5		6
	Stenolaemata		1		1
Chordata	Asciidiacea	2	3		5
Cnidaria	Hexacorallia	2	5		7
	Hydrozoa	1	10		11
	Octocorallia	1		1	2
Echinodermata	Asteroidea	5	5		10
	Crinoidea		1		1
	Echinoidea	4	1		5
	Holothuroidea	1	1		2
	Ophiuroidea	3	2		5
Mollusca	Bivalvia	5			5
	Gastropoda	2	17		19
Porifera	Calcarea		1		1
	Demospongiae		22		22
Total		35	90	1	126

period that can extend from a few weeks to months to complete their development) and hermaphroditic (individuals with functional organs of both sexes, either simultaneous or successive), releasing lecithotrophic parenchymella larvae after variable internal embryonic developments (Maldonado et al. 2002). This has been reported in families such as Myxillidae, Microcionidae, Mycalidae, Hymedesmiidae, Isodictyidae, and Latrunculiidae (Erekovsky 2000; Maldonado 2006; Baldacconi et al. 2007; Maldonado and Riesgo 2009; Koutsouveli et al. 2018). Embryos at early developmental stages have been found in September in *Mycale (Aegogropila) magellanica*, commonly present in the region –reported by Schejter et al. (2012)– as well

as in *Isodictya* spp. such as *I. kerguelensis* and *I. setifera*, suggesting a seasonal spawning pattern (see Burton 1932). *Tedania (Tedaniopsis) charcoti* has been observed to develop embryos internally from unsegmented eggs until larval release (Burton 1932). Embryonic development at different stages was reported in *Clathria (Clathria) discreta* and *Spongia magellanica* (Burton 1932), and the presence of embryos in the mesohyl was also recorded for *Iophon proximum* (Burton 1940). Gonochorism has been observed in genera such as *Callyspongia*, *Calyx*, *Haliclona*, and members of *Suberitidae* (e.g. *Suberites*, *Pseudosuberites*, *Plicatellopsis*) and *Niphatidae* (e.g. *Dasychalina*, *Haliclonissa*) (see Baldacconi et al. 2007; Maldonado and Riesgo 2009),

Table 4. Parental protection of embryonic development, either through body incubation or by producing protective egg capsules, from which larvae or juveniles may hatch. NO: indirect development via eggs released externally from the parent organism, with no parental care; YES: indirect or direct development involving some form of incubation or parental care; SD: no data.

Phylum	Class	NO	SD	YES	Total
Annelida	Polychaeta	2		5	7
Arthropoda	Malacostraca			11	11
	Pycnogonida			1	1
	Thecostraca			2	2
Brachiopoda	Rhynchonellata		1	2	3
Bryozoa	Gymnolaemata	1		5	6
	Stenolaemata			1	1
Chordata	Asciidiacea	2		3	5
Cnidaria	Hexacorallia	2		5	7
	Hydrozoa		9	2	11
Echinodermata	Octocorallia	1	1		2
	Astroidea	5		5	10
	Crinoidea			1	1
	Echinoidea	4		1	5
	Holothuroidea	1		1	2
Mollusca	Ophiuroidea	3		2	5
	Bivalvia	4		1	5
	Gastropoda	1	1	17	19
Porifera	Calcarea		1		1
	Demospongiae		10	12	22
Total		26	23	77	126

all present in the study area. Species of the order Haplosclerida typically incubate embryos in the mesohyl or aquiferous canals. For example, *Hali-clona bilamellata* showed oocytes and embryos in early developmental stages during winter in South Georgia Island (Isla San Pedro) (Burton 1932), and *H. penicillata* was reported to incubate 30-60 embryos inside internal chambers (Koutsouveli et al. 2018).

Summarizing, sponge larvae of the shelf-break front may be mainly lecithotrophic, short-lived, and undergo a planktonic or crawling phase lasting from a few hours up to three weeks. They usually use cilia for swimming in the water column, al-

though some larvae glide or creep over the substrata. Once settled, they metamorphose into juvenile sponges (Maldonado 2006; Maldonado and Bergquist 2006).

Cnidaria

Cnidarians exhibit diverse reproductive strategies, especially among the subphylum Medusozoa, which often undergo metagenesis involving a benthic polyp stage and a planktonic medusa stage. Polyps reproduce asexually by budding, producing medusae that reproduce sexually, yielding a planula larva (Brusca and Brusca 2005). In most species, however, the medusa stage is reduced or absent,

Table 5. Presence of larval stages in the life cycles of the studied organisms. DD: direct development; ID: indirect development; LLE: lecithotrophic larva; LPL: planktotrophic larva; SD: no data; LLE-LPL: both possibilities.

Phylum	Class	DD	ID				Total
			LLE	LPL	SD	LLE-LPL	
Annelida	Polychaeta	1	1	5			7
Arthropoda	Malacostraca	4		7			11
	Pycnogonida			1			1
	Thecostraca		2				2
Brachiopoda	Rhynchonellata			1	2		3
Bryozoa	Gymnolaemata		5	1			6
	Stenolaemata			1			1
Chordata	Asciidae		5				5
Cnidaria	Hexacorallia	3	3	1			7
	Hydrozoa		11				11
	Octocorallia		1		1		2
Echinodermata	Asteroidea		7	3			10
	Crinoidea					1	1
	Echinoidea		1	4			5
	Holothuroidea		1	1			2
	Ophiuroidea	2		3			5
Mollusca	Bivalvia	1	2	2			5
	Gastropoda	10	1	7	1		19
Porifera	Calcarea			1			1
	Demospongiae		22				22
Total		21	64	36	4	1	126

with the larva being the only planktonic stage. On the contrary, in the subphylum Anthozoa, the medusa stage is entirely absent. Gametes are produced by adults, and fertilization can be external or internal, with larvae developing either in the water column or within the parent.

At least 25 cnidarian species were reported from the study area: 15 hydrozoans, at least 4 sea anemones, 5 corals, and 1 zoantharian (Bremec et al. 2003; Genzano et al. 2009; Schejter et al. 2015); 19 of them were included in this revision. Among hydrozoans, there was a trend of reduced medusa stages in deeper and colder waters. Most species

retain sessile gonophores and directly release planula larvae (Bouillon et al. 2006). Examples include *Syntheceum robustum*, *Symplectoschyphus subdichotomus*, *Sertularella mediterranea*, *S. striata*, *Halecium beani*, *Lafoea dumosa*, *Filellum* spp., *Grammaria abietina*, and *Eudendrium ramosum*. Studies conducted in the intertidal zone of Mar del Plata showed that reproductive structures of *H. beani* were recorded only during the summer, whereas those of *S. mediterranea* began to appear in late summer and increased throughout autumn and winter (Genzano 1994). In *S. mediterranea*, larvae develop within a gelatinous brood cham-

Table 6. Information on the studied species. YES: at least partial information on reproductive aspects; SD: no species-level information available.

Phylum	Class	SD	YES	Total
Annelida	Polychaeta	7		7
Arthropoda	Malacostraca	4	7	11
	Pycnogonida	1		1
	Thecostraca	1	1	2
Brachiopoda	Rhynchonellata	1	2	3
Bryozoa	Gymnolaemata	4	2	6
	Stenolaemata	1		1
Chordata	Asciidae	2	3	5
Cnidaria	Hexacorallia	1	6	7
	Hydrozoa	9	2	11
	Octocorallia	2		2
Echinodermata	Astroidea	1	9	10
	Crinoidea		1	1
	Echinoidea	2	3	5
	Holothuroidea		2	2
	Ophiuroidea	1	4	5
Mollusca	Bivalvia	2	3	5
	Gastropoda	12	7	19
Porifera	Calcarea	1		1
	Demospongiae	14	8	22
Total		66	60	126

ber (= acrocyst) outside the gonotheca. *Phialella chilensis* probably exhibits a full medusoid cycle (implying the existence of external fertilization), as recorded for other *Phialella* species (Blanco et al. 2000). Lecithotrophic planulae with limited swimming ability have been reported in other *Eudendrium* species, and their metamorphosis has been described in detail by Sommer (1990). Based on genus- and family-level life-history descriptions, *Phialella* and many Sertulariidae produce non-feeding planulae (lecithotrophic) (Boero 1987; Bouillon et al. 2004). However, no data were available on reproductive seasonality or larval duration in the region. Existing studies focused mainly on intertidal or shallow-water species in Argentina (e.g. Gen-

zano 1994; Genzano et al. 2002; Jaubet and Genzano 2011). In general, planulae are lecithotrophic and swim, or they are transported by the currents, until settling and metamorphosing into polyps.

In hydrozoan species with free-living medusae, species dispersal depends not only on the larval stage but also on the medusa phase (Bouillion et al. 2006). However, other dispersal mechanisms, such as rafting, the production and release of frustules (type of asexual propagule that detaches from the colony), and the movement of free-living planktonic colonies by water currents, can also contribute to a species' broad geographic range (Jaubet and Genzano 2011 and reference therein). Asexual reproduction seems to be extremely important

for maintaining populations of *Filellum* spp. The numerous colonies frequently recorded on the Argentine continental shelf were always immature, lacking gonothecae (pers. obs. G. N. Genzano).

Anthozoans, such as sea anemones, corals, and zoantharians, display only a polyp stage. *Actinostola crassicornis*, a common gonochoric sea anemone usually recorded in the shelf-break front benthic community, shows year-round gametogenesis, internal fertilization, and it is also a brooder, releasing juveniles with three tentacle cycles (Riemann-Zürneck 1978; Rodríguez and López-González 2013; Lauretta et al. 2020) (Figure 2). *Antholoba achates* also exhibits brooding, which has been reported as hermaphroditic or gonochoric (Fautin 1984; Häussermann and Försterra 2009), often associated with volutid gastropods in the studied area (Schejter and Escolar 2013).

Evidence of brooding was also reported for *Isotealia antarctica*, also frequently found on gastropod shells in the study area (Häussermann and Försterra 2009; Schejter and Escolar 2013). Among scleractinian corals, *Flabellum curvatum* and *F. thouarsii* are morphologically similar species with documented gonochorism and brooding (they retain eggs and larvae in their gastrovascular cavity) in Antarctic waters, where larvae are released. Females release year-round larvae with developed tentacle buds and an oral disc. Due to their limited swimming ability, coral larvae's dispersal distance was mostly determined by their longevity (i.e. maximum lifetime), settling ability, larval survival, and oceanographic conditions (e.g. water current speed and direction). *Flabellum*'s larvae remain in the environment for a short period and then settle in the vicinity of the adults and even on the theca of the adult coral (Squires 1962; Waller et al. 2008). Settlement on the parent coral's theca has also been observed by the authors of the present study in the shelf-break front (Figure 2). The cup coral *Desmophyllum dianthus* is a cosmopolitan species, rarely recorded at the shelf-break front (Schejter et al. 2015), although it is frequently recorded in deeper areas of the slope in Argentinian waters (Cairns

and Polonio 2013; Schejter and Bremec 2019). It is a gonochoric species, and the reproduction was studied in the Chilean Patagonia, turning out to be highly seasonal, with a spawning at the end of austral winter (August) and beginning gamete production in early spring (September) (Feehan et al. 2019). These authors also recorded a high fecundity compared to other deep-sea scleractinians, ranging from 2,448 (± 5.13 SE) to 172,328 (± 103.67 SE) potential oocytes per polyp. In accordance with Addamo et al. (2012), it was concluded that *D. dianthus* may use the same reproductive techniques as other deep-water coral species, being a broadcast spawner with lecithotrophic larvae. Coral larvae are relatively poor swimmers; therefore, their dispersal distance is mostly dependent on their longevity (i.e. maximum lifetime), settlement competence, larval survival, and oceanographic conditions (e.g. speed and direction of currents) (see also Scheltema 1986).

Two octocoral species are common in the region. *Alcyonium antarcticum* (= *A. paessleri*) is frequently found on scallop shells but lacks reproductive data; reproductive modes within the genus vary widely (McFadden et al. 2001; Kahng et al. 2011; Quintanilla et al. 2013). No species-level reproductive data were found for *Convexella magelhaenica*. Based on family- and genus-level accounts for Primnoidae and Octocorallia, the most parsimonious inference was that *C. magelhaenica* produces a planktonic planula following broadcast spawning, and that larvae are likely lecithotrophic. Given documented variation in octocoral reproductive modes (brooding vs. spawning; gonochorism vs. hermaphroditism), this should be stated as an inference pending species-specific histological or rearing evidence (Waller et al. 2023). The zoantharian *Epizoanthus paguricula* was exclusively associated with the hermit crab *Sympagurus dimorphus* (Schejter and Mantelatto 2011). While reproductive data were scarce for zoanthids, related *Epizoanthus* spp. associated with hermit crabs were gonochoric, reproduce year-round, have and likely produce planktotrophic larvae (Muirhead and Tyler 1986).

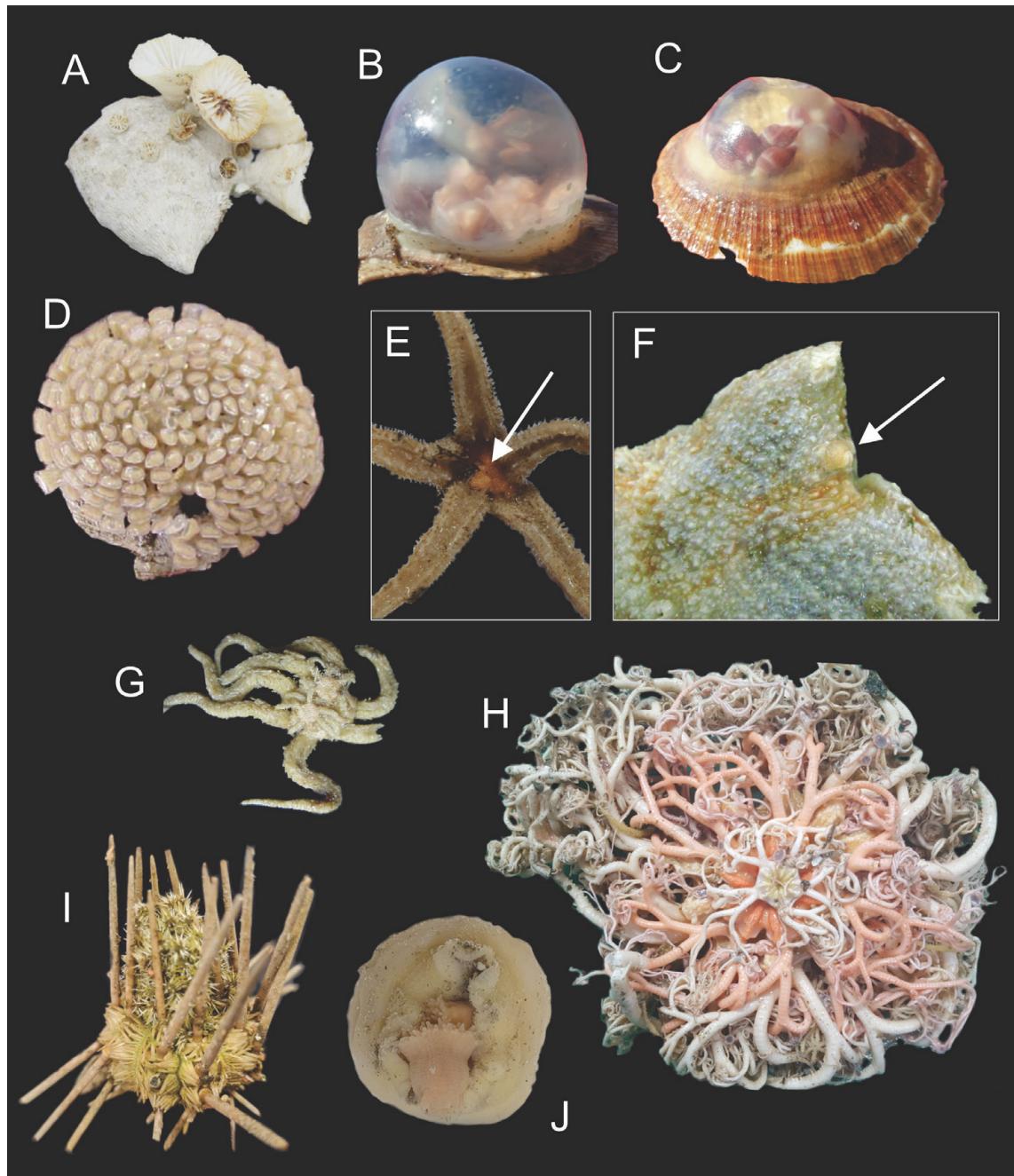


Figure 2. Parental care in some of the species recorded in the study area. A) Adult *Flabellum curvatum* with juveniles attached to the theca. B) Egg capsule of *Odontocymbiola magellonica*; C) Egg capsule of *Adelomelon ancilla*. D) Egg capsules of *Fusitriton magellanicus*. E) Oral incubation in *Diplasterias brandti*. F) Incubation within the body wall in *Diplopteroaster clarki*. G) *Ophiosabine vivipara* with associated juveniles. H) *Gorgonocephalus chilensis* with an associated juvenile. I) Female *Austrocidaris canaliculata* carrying numerous juveniles on the aboral surface. J) *Actinostola crassicornis* brooding juveniles within the gastrovascular cavity.

Annelida

Polychaete annelids display diverse reproductive strategies among marine invertebrates (Wilson 1991; Giangrande 1997; Rouse and Pleijel 2001). Most reproduce sexually and are gonochoric, although hermaphroditism is also present. Gametes typically develop in specialized organs or coelomic cavities and are released via nephridia, gonoducts, or through body rupture. Larval development includes planktonic trochophore, metatrochophore, and nectochaeta stages before settling.

Asexual reproduction via budding, fission, or fragmentation is also common, with regeneration of lost segments. In the shelf-break front region, several tube-dwelling polychaetes live on biogenic substrates like mollusk shells and crabs (i.e. Bremec et al. 2003; Schejter and Bremec 2007). The Serpulidae (*Serpula narconensis*, *Spirorbinae* spp.) and Sabellidae (*Potamilla antarctica*) construct calcareous or translucent tubes and are indicators of Vulnerable Marine Ecosystems (CCAMLR 2009). Hermaphroditism, asexual reproduction, and regeneration are reported in both families, with alternation between reproductive modes. Sexual reproduction involves external fertilization, either within the tube water or the surrounding environment (Giangrande 1997; Gambi et al. 2000; Rouse and Pleijel 2001). Embryos are often incubated on radioles (Sabellidae) or modified opercula (Spirorbinae) (Knight-Jones and Bowden 1984; Giangrande 1997). Planktonic development with feeding trochophores is well known in some genera such as *Serpula*, while *Spirorbinae* has lecithotrophic larvae that are competent to settle when released from the brood chamber, and the duration of swimming lasts up to several hours (Kupriyanova et al. 2019). Smaller sabellids typically brood embryos, whereas larger species release gametes for external fertilization (Rouse and Fitzhugh 1994).

Another tubicolous polychaete species that settles abundantly on Patagonian scallop shells is *Idanthyrsus macropaleus*, a member of the family Sabellariidae. This species constructs rigid tubes made of cemented sand grains, which may occa-

sionally cover the entire upper valve and extend beyond its margin (Bremec et al. 2003; Schejter and Bremec 2007). Members of this family are dioecious and broadcast their gametes into the water column, where external fertilization occurs. The resulting larvae are planktotrophic (Pawlak 1992; Kirtley 1994), with a prolonged planktonic stage and a high dispersal potential (Giangrande 1997). Successful settlement and development into sessile adults depend on finding suitable substrates, a process mediated by chemical cues detected through sensory organs located in the anterior region of the body (Kirtley 1994; Helm et al. 2018). *Chaetopterus antarcticus* is also a conspicuous tubicolous polychaete species recorded in the study area. Although primarily infaunal, it has occasionally been reported as an epibiont on the Patagonian scallop (Bremec and Schejter 2019). Members of this family (Chaetopteridae) are gonochoric; males and females can be distinguished by the color of the gamete-containing posterior body segments (white in males and yellow in females) (Rouse and Pleijel 2001). Some species of this genus have also been observed to reproduce asexually and exhibit regenerative capabilities (Nishi 1996; Giangrande 1997).

Less frequently, tubicolous polychaetes of the genus *Phyllochaetopterus* have been recorded in samples collected from the shelf-break front (Bremec et al. 2003). Studies conducted on other species of this genus suggest that they are gonochoric and capable of sexual reproduction, as well as regeneration. Additionally, the presence of eggs inside the tubes has been documented in some individuals (Bloom 1976).

Finally, some polychaete species exhibit a boring lifestyle and may be found inhabiting mollusk shells. This group includes species of the genus *Polydora*, belonging to the family Spionidae. These worms are generally gonochoric and brood their offspring; some species release planktotrophic larvae, while others release juveniles (Wilson 1991). *Polydora* species –or traces left by them on different substrates– have been sporadically detected in the study area (see Schejter and Bremec 2007).

Mollusks

More than 20 mollusk species are frequently recorded in the study area. However, the Patagonian scallop *Zygochlamys patagonica* is the dominant and keystone species in the benthic community associated with the Argentine shelf-break front. Although its distribution extends beyond this region, it is in this area where dense aggregations are found, supporting the development of an industrial fishery since 1996 (Schejter et al. 2017a; Campodónico et al. 2019). This species is gonochoric, with a marked seasonal reproductive cycle and partial spawning events occurring between September and March (Campodónico et al. 2004, 2008), which are associated with food availability (Schejter et al. 2002). Fertilization is external. Under laboratory conditions, the trochophore larva appears approximately 80 hours post-fertilization (Schwartz and Campodónico 2019), followed by a free-swimming, planktotrophic veliger larva, which reaches the pre-umbonate stage within 50 days and remains in the water column for up to 70 days (Schejter et al. 2010; Schwartz and Campodónico 2019). Primary settlement substrates in this community include hydroids, mainly *Symplectoscyphus subdichotomus* and *Grammaria abietina* (= *Grammaria magellonica*) (Bremec et al. 2008).

Although less abundant in terms of biomass and density, several bivalve species occur frequently in this benthic community. *Hiatella umbonata* (= *Hiatella meridionalis*, see Zelaya and Güller 2023) is among the most common, and is morphologically and ecologically distinguishable from other bivalves in the region by its sessile lifestyle and the presence of byssus. Reproductive information for this species is scarce; however, like *Z. patagonica*, it has been observed to possess a planktotrophic veliger larva capable of recruiting onto hydroids within the benthic community (Schejter et al. 2010). *Limea pygmaea* is another frequently recorded species. Studies based on specimens from sub-Antarctic areas (Marion Islands) have concluded that this species undergoes direct development, brooding its larvae within the mantle and releasing

fully developed juveniles (Linse and Page 2003). For *Limopsis hirtella*, Martin et al. (1995) based on samples collected between 40 and 240 m (partially overlapping the study area) proposed a year-round reproductive period, although seasonal peaks in recruitment may occur. Other studies on the genus *Limopsis* suggest that most species are gonochoric and release lecithotrophic larvae without brooding (Tanabe 1990; Nakaoka and Ohta 1998; Malchus and Warén 2005), although in the Japanese species *L. azumana*, brooding and juvenile release have been observed (Tanabe 1990). Additionally, organisms identified as *Entodesma* sp. have been recorded in the study area. Reproductive studies on other species of this genus indicate that they are functional hermaphrodites; external fertilization produces short-lived lecithotrophic larvae in the plankton (Campos and Ramorino 1981).

Among gastropods inhabiting this benthic community, the main reproductive strategy involves the deposition of egg capsules containing fertilized eggs onto the seafloor or a suitable substrate. The volutid snails *Odontocymbiola magellanica* and *Adelomelon ancilla* are frequently found in this region. Both are gonochoric and deposit their egg capsules on loose mollusk shells, empty skate capsules, and other biogenic substrates (Bremec et al. 2003) (Figure 2). Although their reproductive cycles have only been studied in Patagonian gulfs, they exhibit seasonality, with egg-laying occurring primarily in spring (associated with increasing photoperiod) and extending through late summer (Bigatti et al. 2008; Penchaszadeh et al. 2009). Juveniles emerge directly from the capsules, having developed by feeding on intracapsular fluid (Penchaszadeh et al. 1999).

Another conspicuous and abundant gastropod in the shelf-break front is *Fusitriton magellanicus*, which also produces distinctive egg capsules (Figure 2), typically associated with biogenic substrates (often mollusk shells) in this region, although in other parts of its distributional range, egg masses have been observed on rocky substrates. Studies from the Strait of Magellan have described a sea-

sonal reproductive strategy, with spawning occurring in spring. Unlike volutids, *F. magellanicus* releases long-lived, swimming, planktotrophic veliger larvae, thus favoring the potential of dispersion of the species. The complete intracapsular development lasts between 55 and 67 days (Cañete et al. 2012). Each female may deposit 20 to 290 capsules per spawning event, with each capsule containing between 2,800 and 4,200 eggs (Penchaszadeh and De Mahieu 1975).

Among muricids, *Coronium acanthodes* has been occasionally recorded. It produces distinctively lenticular egg masses from which juveniles emerge directly (Pastorino and Penchaszadeh 2009). Another muricid, *Fuegotrophon pallidus*, is also recorded in the region, although no data are available on its egg mass morphology or embryonic development (Pastorino et al. 2014), as is also the case for *Trophon ohlini*. *Trochita pileus* is a common species in the area, mostly associated with *Z. patagonica* shells. It is a protandric hermaphrodite, a trait common to many members of the family Calyptaeidae, which also exhibits parental care. Torroglosa and Giménez (2012) reported that each *T. pileus* female lays between 7 and 8 capsules, each containing 4 to 14 embryos, from which juveniles emerge directly. Teso and Penchaszadeh (2019) later provided evidence for the presence of nutritive cells within the capsules.

Fissurellidea megatrema, commonly known as the keyhole limpet, is also a gonochoric species found in this region. Unlike the previously mentioned gastropods, fertilization is external and produces a swimming larva without any parental care (Yuvero et al. 2022). No specific reproductive information is available for the calliostomatid species found in this area (*Calliostoma* spp., *Falsimargarita iris*, *Photinula coeruleascens*). However, based on data from related taxa, these species are likely to be gonochoric, have external fertilization, with larval development occurring within the egg capsule and emerge as crawling juveniles without a free-swimming planktonic stage (Clench and Turner 1960), although planktonic larvae were also reported for

some species of the genus *Calliostoma* (i.e. Holyoak 1989). In some species studied elsewhere, the eggs are released embedded in gelatinous ribbons (Ramón 1990; Holmes 1997).

For *Capulus compressus*, a rare species in the study area, protandric hermaphroditism and egg incubation have been reported. This species produces a unique larval form called 'echinospira' which is a planktotrophic larva that enables a long pelagic dispersal; it has a double shell, a trait also found in the genus *Lamellaria* (Lebour 1935; Orr 1962; Fassio et al. 2015). In *Pareuthria* spp. collected in Argentine Patagonia, reproductive observations indicate that the egg masses consist of multiple capsules, each containing up to five embryos. All larval development occurs within the capsules, and juveniles emerge directly (Pastorino and Penchaszadeh 2002). No specific reproductive data are available for other frequently recorded gastropods in the area belonging to the genera *Admete* and *Volvarina* (Families Cancellariidae and Marginellidae), but based on general patterns (i.e. Coovert 1986; Pawlik et al. 1988), they might be gonochoric, with internal fertilization and planktonic (possibly planktotrophic) larvae, although in the studied species of Marginellidae, larvae development remains intracapsular and emerge juveniles from egg capsules. No specific information on the reproduction of *Cirsotrema magellanicum* (= *Epitonium magellanicum*) is currently available. Nevertheless, based on data from other epitoniid species, this species is likely gonochoric, with females depositing egg capsules from which planktotrophic larvae emerge (e.g. Pastorino and Penchaszadeh 1999; Collin 2000).

Nudibranchs have occasionally been reported in the benthic community of the shelf-break front. At least two nudibranch species are mentioned to be recorded up to 100 m depth in Argentina: *Doris fontainii* (= *Anisodoris fontainei*) and *Marionia cucullata* (Castellanos 1967). Most members of this group are hermaphrodites with complex genital systems of high taxonomic value. Following reciprocal copulation, these organisms lay egg masses in the form of spiral ribbons (i.e. in *D. fontainii*),

coiled bands, or gelatinous aggregations depending on the species. After 2 to 3 weeks, swimming veliger larvae emerge, which may be either planktotrophic or lecithotrophic (Muniain et al. 1992; Häussermann and Försterra 2009). In the case of *D. fontainii*, planktotrophic larvae emerged after a 14 days' incubation period at 14.5 °C in a laboratory study (Muniain et al. 2007). There is no specific information available for *M. cucullata* or other members of the genus, and therefore it is not possible to assign a larval developmental mode for this species. Evidence indicates that within the family Tritoniidae, to which this species belongs, both planktotrophic and lecithotrophic larval developments occur (Kempf and Willows 1977; Kempf and Todd 1989).

Crustacea

Among the most conspicuous and frequent crustaceans in this region are the spider crabs *Libidoclaea granaria* and *Euryopodius latreillii* (Bremec et al. 2003; Schejter and Spivak 2005). In these species, fertilization is internal, involving copulation, and females incubate the eggs on their pleopods. Eggs hatch into planktotrophic larvae (zoeae) which, under laboratory conditions at 15–20 °C, completed metamorphosis to the first benthic crab stage, passing through zoea I, zoea II, and megalopa stages in approximately 50 days (Fagetti 1969; Campodónico and Guzmán 1972). Another crab inhabiting the slope front is *Peltarion spinosulus*, which also produces planktotrophic larvae. Larval stages (four zoeae and one megalopa) were described by Iorio (1983) from plankton samples collected in various sectors of the continental shelf. Larvae were recorded between July and December, with megalopae being particularly abundant in November and December. Ovigerous females were only recorded in March. The larval distribution matched that reported for adults of *P. spinosulus*, and the evidence suggests this is likely an annual-cycle species.

Among hermit crabs, two species are particularly common: *Pagurus comptus* and *Sympagurus*

dimorphus. The reproductive cycle of *P. comptus* has been studied in specimens from the Beagle Channel by Lovrich and Thatje (2006). In that environment, almost 90% of ovigerous females were recorded between April and September, while fewer than 10% were recorded in March and November. Embryonic development within the egg was estimated to take 5–6 months under environmental conditions (4–6 °C). The number of eggs carried by a female ranged from 138 to 848, depending on female size. Larval development consists of four zoeal stages and one megalopa stage, with a duration of approximately four months in the laboratory. *Sympagurus dimorphus* is another relatively frequent hermit crab in the shelf-break front, showing a patchy distribution and mostly living in symbiosis with a zoanthid (Schejter and Mantelatto 2011, 2015). According to data from Schejter et al. (2017b), most females likely hatch their eggs between spring and summer, as females collected in September already carried eggs at an advanced stage of development. Females can carry between 800 and 2,200 eggs, depending on size. Lemaitre and McLaughlin (1992) described the megalopa stage and juveniles of this species. However, there is currently no information on the duration of its larval cycle or early larval stages. A third hermit crab species, *Propagurus gaudichaudii*, also occurs in the shelf-break front region, although it is much less frequent (Bremec et al. 2003), and no specific information is available on its reproductive habits or larval development, although it should follow the generalities reported for Paguridae.

The gregarious squat lobster *Grimothea gregaria*, another anomuran like the hermit crabs, forms large concentrations in more coastal or shelf areas, where it plays an important role in the ecosystem (e.g. Romero et al. 2004), but is also found in the shelf-break front (Bremec et al. 2003). Several studies have addressed its reproductive strategies in different regions of the Argentine Sea. This dioecious species has seasonal reproduction that varies geographically. According to Dellatorre and Barón (2008), studies conducted in northern Patagonian

gulfs showed that brooding females of *G. gregaria* were present from June to December and that embryonic development lasted 26-29 days at 11 °C; the synchrony between ovarian re-maturation and embryogenesis suggests the capacity for more than three consecutive egg clutches per reproductive season. Also, more than 10,750 eggs have been recorded in a single female (Tapella et al. 2002). The planktotrophic larvae (six zoeal stages and one megalopa stage) have a high dispersal capacity (e.g. Tapella et al. 2002; Pérez-Barros et al. 2007; Víñuela 2007).

Among Cirripedia, the lepadomorph barnacle *Weltnerium gibberum* is a common epibiont of the Patagonian scallop but has also been recorded on other organisms in this benthic community (Schejter and Bremec 2007). Descriptions of its developmental stages were provided by Nilsson-Cantell (1930). In general, lepadomorph barnacles may be hermaphroditic or have separate sexes, with dwarf males permanently associated with the female and unable to feed. Copulation occurs between sessile mating pairs. Eggs are fertilized within the mantle cavity (brood chamber) and remain there until hatching (Buhl-Mortensen and Høeg 2006). Depending on the species, either nauplius or cypris larvae may be released, and either planktotrophic or lecithotrophic larval modes may occur, with the latter being more common in deep or shelf environments. Nilsson-Cantell (1930) described for *W. gibberum* a free-living stage called ‘pupa without plates’, equivalent to a cypris larva, which remains within the female’s mantle cavity. Cypris larval release has been observed in other species of *Weltnerium*, as well as in members of *Ornatoscalpellum* and *Verum* (Buhl-Mortensen and Høeg 2006, 2013). Dispersal capacity in these species is presumably limited, as cypris larvae are lecithotrophic and are estimated to settle within 3-4 days after release, which is a developmental strategy likely advantageous in deep-sea organisms dependent on rare and/or patchily distributed habitats (Buhl-Mortensen and Høeg 2013). Only general data was previously reported for *Balanus laevis*, a cirriped distributed

up to 275 m, although larval settlement was reported to occur more frequently in spring in Chubut, Argentina (Rico et al. 2001; Häussermann and Forsterra 2009). The life cycle of *Balanus laevis*, could resemble that of other congeners, including a sessile adult phase and a planktonic larval phase. As reported for other *Balanus*, this should be a simultaneous hermaphrodite, exhibiting internal cross-fertilization typical of balanid barnacles (Desai et al. 2006); fertilization is internal and embryos are brooded until hatching into planktotrophic nauplii, which pass through six stages before reaching the non-feeding cypris stage. The cypris settles on a suitable substrate and metamorphoses into a juvenile barnacle (Anderson 1994).

Among peracard crustaceans, several species of isopods and amphipods have been recorded in this region (Bremec et al. 2003; Sánchez et al. 2011; Schejter et al. 2012). The most conspicuous species are the isopods *Acanthoserolis schytei* and *A. polaris*, while some sphaeromatids are frequently recorded as well. Although no species-specific information is available on reproduction and development, in general, serolid isopods are gonochoric with direct development, and females brood their developing young in a ventral marsupium formed by overlapping oostegites, from which juveniles emerge (Johnson et al. 2001). For Antarctic serolid isopods, incubation has been suggested to last 8-20 months, with juvenile release coinciding with the peak in primary production (Luxmoore 1982). The number of eggs/embryos per female is related to female size and likely also to nutritional condition. Observations on *A. polaris* described the copulatory behavior and suggested that females do not ingest food during breeding (Moreira 1973).

Pycnogonida

Pycnogonids, commonly known as sea spiders, are dioecious arthropods that exhibit an unusual reproductive strategy within the group, as males provide parental care for eggs and early post-embryonic stages. When sexually mature adults meet, the female positions herself over the male and re-

leases eggs into the water simultaneously as the male releases sperm, resulting in external fertilization. Subsequently, the male collects and attaches eggs onto his ovigerous appendages, which are the modified third legs specialized for this purpose. Eggs hatch into free-swimming prototomph larvae, which may sometimes act as symbionts of cnidarians, mollusks, or echinoderms. Through successive molts, the larvae add segments and appendages until they develop into juveniles. Depending on the species' developmental pattern, embryos may remain protected by the male until they reach stages resembling adults (Bain 2003; Brusca and Brusca 2005; Fornshell 2015). In other species, endoparasitic larvae can also occur on the gastrozooids of hydroid colonies (Genzano et al. 2002).

Brachiopoda

Three brachiopod species have been recorded on the shelf-break front: *Magellania venosa*, *Terebratula dorsata*, and *Liothyrella uva* (McCammon 1973, Bremec et al. 2003). Studies on *M. venosa* in the Magellanic region showed that its distribution is mainly associated with the type of available settlement substrate and current velocity. This species is gonochoric and viviparous, with a marked reproductive season, although some individuals with mature gonads were observed year-round. Sperm is released in mucous masses, and fertilization occurs internally within the female's nephridia (McCammon 1973).

In *L. uva*, larval development and reproduction were studied in specimens from Antarctic waters. This species is also gonochoric, with a possibly seasonal reproductive cycle and internal fertilization. Gamete release mainly occurs between September and November. Females brood eggs on their lophophores and primarily release a ciliated gastrula-stage larva in January (Peck and Robinson 1994). However, Peck et al. (2001) found that females may release larvae at different developmental stages, ranging from early gastrulas to competent larvae ready to settle. Competent larvae were observed to prefer settling on live brachio-

pods. The estimated time from gamete release to larval settlement ranges between 115 and 160 days, although metamorphosis may be delayed in the absence of suitable settlement substrate. Meidlinger et al. (1998) proposed that *L. uva* might reproduce asynchronously throughout the year under certain conditions as an adaptive response to interannual resource variability.

There is no specific information available for *T. dorsata*, the third brachiopod species frequently recorded in the study area. However, it is reasonable to assume that it shares similar characteristics with the other two species mentioned, given that they belong to the same group (Articulata), occupy the same habitat, and have been recorded in coexistence.

Echinodermata

Echinoderms are an important component of the benthic community in the shelf-break front region, where mainly nine species of the class Asteroidea, five of Ophiuroidea, five of Echinoidea, three of Holothuroidea, and one of Crinoidea have been recorded (Escolar and Bremec 2015; Schejter et al. 2026). Additionally, some other less common species are occasionally found. Among sea stars (Asteroidea), various reproductive strategies are observed, ranging from species with free-living larvae (bipinnaria and brachiolaria, which can have pelagic, benthic, planktotrophic, or lecithotrophic development) to species with direct development (Bosch and Pearse 1990; Byrne 2006). Brooding of offspring on different parts of the female's body is common among some species distributed on the shelf-break front. For example, *Ctenodiscus australis*, one of the most abundant and frequent species (see Escolar et al. 2011), was observed by Lieberkind (1926) incubating embryos beneath the paxillae on the aboral surface. The developmental stages were later described by Rivadeneira et al. (2017) in specimens collected from deep waters of the slope. These authors also noted that females may brood embryos at different developmental stages simultaneously. The maximum number of

offspring recorded per female was 73, with one stage comparable to a brachiolaria larva but lacking larval arms and possessing an adhesive disc at the center of the preoral lobe. Development in this species is lecithotrophic, and reproduction may occur continuously throughout the year, as females with mature oocytes and embryos were observed in different months of the year, with no particular pattern (Rivadeneira et al. 2017).

Other brooding species in the shelf-break front include *Diplopteraster clarki*, *Pteraster affinis lebruni* (Figure 2), *Diplasterias brandti* and *Anasterias antarctica* (= *Anasterias minuta*). The first two retain lecithotrophic larvae in brood chambers. Bernasconi (1937) reported 18 juveniles under the supradorsal membrane of one arm in *Pteraster affinis lebruni*. Fraysse et al. (2020a) documented year-round reproduction in *Diplopteraster verrucosus*, a congeneric species occasionally recorded near the Burdwood Bank. *Diplasterias brandti* and *A. antarctica* brood their offspring in oral brood chambers, which causes females not to feed during incubation. Populations of *A. antarctica* in coastal Patagonia showed a seasonal reproductive pattern with an incubation period of 7 to 8 months (Gil et al. 2011; Pérez et al. 2015), spawning between April and May, and juvenile release in August-September (Gil et al. 2011). Eight developmental stages were recorded, including a lecithotrophic larva and a modified brachiolaria (Gil et al. 2011).

Among species that possess indirect development and external fertilization in the study area are *Henricia obesa* and *Acodontaster elongatus*, both with lecithotrophic larvae, and *Odontaster penicillatus*, with planktotrophic larvae (Janosik et al. 2008; Fraysse et al. 2020b). A particular case is *Glabraster antarctica*, which has external fertilization but releases nutrient-rich eggs and a facultatively planktotrophic larva (Bosch 1989; Fraysse et al. 2020b). There is no species-specific information on the reproduction or larval development of the sun star *Labidiaster radiosus*, also common in the region (Escalar and Bremec 2015). However, for its Antarctic congener *Labidiaster annulatus*, in-

direct development with release of planktotrophic bipinnaria larvae has been reported, which metamorphose into juveniles after passing through a brachiolaria stage (Janosik et al. 2008).

Most brittle stars (class Ophiuroidea) are dioecious, with external fertilization and indirect development. Mature gametes are released into bursae and expelled to the outside. Two larval types occur: planktotrophic ophiopluteus and lecithotrophic pelagic vitellaria. Some species brood their young within bursae, ovaries, or coelom. Metamorphosis occurs while larvae are still swimming (Hendler 1991; McEdward and Miner 2001; Pérez et al. 2014). Some ophiuroids also reproduce asexually by fission and regeneration (Hyman 1955). The largest species in the study region is *Gorgonocephalus chilensis* ('basket star'), which likely has indirect development with release of pelagic larvae capable of dispersal (Barboza et al. 2010). Juveniles of other *Gorgonocephalus* species associate with corals in other regions (Neves et al. 2020). In the shelf-break front and Burdwood Bank, juveniles were observed closely associated with adults (personal observations, Figure 2), suggesting adults may be important for population maintenance. Other abundant but smaller brittle star species include *Ophiosabine vivipara* (= *Ophiacantha vivipara*), *Ophiuroglypha lymani*, *Ophiactis asperula*, and *Ophiomixa vivipara*. As their names suggest, the first and last are viviparous, retaining eggs in bursae until juveniles emerge (Mortensen 1936; Hyman 1955). *Ophiosabine vivipara* shows an annual reproductive cycle, with smallest individuals recorded in adult genital slits between March and October (Sánchez 2011; Esclar et al. 2013). Huenten et al. (2025) reported a high genetic connectivity between several populations of *O. asperula* in Argentina facilitated by a planktotrophic larval stages (Mortensen 1913; Selvakumaraswamy and Byrne 2000). *Ophiactis resiliens* from Australia shows an annual reproductive cycle with peak spawning in winter (Falkner and Byrne 2003), possibly similar in *O. asperula*. No specific studies exist for *O.*

lymani, but isolated observations confirm separate sexes and many small eggs (Mortensen 1936).

Among sea urchins (class Echinoidea), reproductive strategies vary. Most are dioecious with external fertilization and indirect development, but some cold-water incubators have direct development (Pérez et al. 2014). The planktonic larva, called echinopluteus, has six pairs of elongated arms and metamorphoses rapidly to juvenile, unlike asteroids with a fixed larval stage (Ruppert and Barnes 1996). In temperate sea urchins, reproductive cycles are annual or semiannual, influenced by photoperiod, lunar phase, water temperature, and nutrition (Brogger et al. 2010). Five main sea urchin species occur on the shelf-break front. *Austrocidaris canaliculata*, a frequent and easily recognized species (Bremec et al. 2003), is dioecious and unique among Cidaroidea urchins for brooding offspring on its aboral surface, protected by spines (Figure 2). Development is direct and lecithotrophic, with a female observed brooding up to 536 offspring (Flores et al. 2019). *Pseudechinus magellanicus*' reproductive cycle has been studied in South American populations (Orler 1992; Marzinelli et al. 2006; Kino 2010; Gil et al. 2020; Pföh et al. 2025). It is dioecious with planktotrophic larvae, exhibiting an annual reproductive cycle with main spawning in spring and a smaller, asynchronous spawning late in summer. Reproductive success is attributed to synchronization with environmental factors like temperature, photoperiod, and chlorophyll increases (Gil et al. 2020). Recently, a small proportion of hermaphrodite specimens of *P. magellanicus* was reported by Pföh et al. (2025) in the Beagle Channel. The green urchin *Arbacia dufresnii*, occasionally recorded on the shelf-break front ca. 80 m depth, follows the annual pattern with spawning peaks in spring and summer (Brogger et al. 2010). There is evidence that in this species the embryonic and larval development are conditioned by water temperature and maternal origin of eggs (Pía-Fernández et al. 2021). *Sterechinus agassizii*, another frequent urchin in the region, lacks reproduction data, but the Antarctic congener *Sterechinus neumayeri* shows annual cycles, slow development

rates, and planktotrophic larvae released coinciding with phytoplankton blooms (Bosch et al. 1987). Little is known about the irregular urchin *Tripylaster philippii*, the fifth most commonly recorded species. Genera *Tripylaster* and *Brisaster* species are the only Schizasteridae known not to brood their young, exhibiting indirect development with planktotrophic larvae (Pearse et al. 2008).

Sea cucumbers (class Holothuroidea) have a single gonad (unlike other radially symmetrical echinoderms). Generally, they have external fertilization and indirect development through an auricularia larva (Hickman et al. 2001). *Psolus patagonicus*, a frequent and conspicuous species often associated with the Patagonian scallop, is dioecious and brooding (Bernaconi 1941; Hernández 1981; Giménez and Penchaszadeh 2010; Martínez et al. 2011). It reproduces during the austral summer, spawning in February-March, with females brooding under their bodies from February to September. The doliolaria larval stage was observed in June, pentactula in late July, and juveniles were released in September-October (~ 2 mm size) (Giménez and Penchaszadeh 2010). *Pentactella leonina* (= *Pseudocnus dubiosus leoninus*) is also a frequent species and has been suggested to have indirect development with external fertilization (Martínez et al. 2020).

Within Crinoidea (sea lilies), there are two species described for the Southwest Atlantic Ocean *Isometra vivipara* and *Phrixometra nutrix*, both of which are brooding species (Clark and Clark 1967; Pertossi et al. 2019, 2021; Pertossi and Martínez 2022). The reproduction and development of both species was studied near Burdwood Bank (Pertossi et al. 2019; Pertossi and Martínez 2022). However, only *I. vivipara* was recorded in the study area until present. It is dioecious with internal fertilization and uniquely presents two brooding stages: lecithotrophic embryos in a marsupium, followed by cystidean larvae adhering to the mother's cirri. The next stage is the feeding pentacrinoid larva (Mortensen 1920). Oocytes in various developmental stages were recorded simultaneously, suggesting year-round reproduction. The larva attaches to the

substrate via a specialized adhesive pit, where metamorphosis into a sessile juvenile crinoid occurs. Crinoids have high regenerative capacity similar to asteroids and ophiuroids, using asexual reproduction in adverse conditions or after predation (Ruppert and Barnes 1996).

Bryozoa

Bryozoans are organisms capable of reproducing both sexually and asexually. In the shelf-break front, many bryozoan species occur, most of them recorded as epibionts (e.g. López Gappa and Landoni 2009; Schejter et al. 2014). Asexual reproduction is used to increase colony size, whereas sexual reproduction involves free-swimming larvae, which may be either planktotrophic or lecithotrophic, with the ability to disperse and colonize new habitats. In general, individuals are hermaphroditic, although some dioecious species have been also recorded among cheilostomes. Some groups can brood the early developmental stages; there are viviparous species, and in some cases, species develop a structure functionally similar to a placenta (Brusca and Brusca 2005; Ostrovsky et al. 2008, 2009). Most of the species reported in the shelf-break front belong to the order Cheilostomatida (see López Gappa and Landoni 2009; Schejter et al. 2014), which is characterized by a variety of methods for embryonic incubation. Embryos may be brooded in external membranous sacs, skeletal (calcified) chambers, or internal incubation sacs formed by uncalcified zooidal walls, or they may develop intracelomically in viviparous species. In some cases, extraembryonic nutrition has been recorded. Most cheilostomes brood their offspring in skeletal chambers called ovicells. The presence or absence of ovicells, as well as their morphology, are considered important traits in the taxonomy of the group (Ostrovsky 2008). However, the species-specific information on reproduction for the bryozoans recorded in this area is very scarce. As exceptions, Ristedt (1991) reported a size of the ancestrula (the size of the ancestrula corresponds closely to the maximum dimension of a cyphonautes larva) of $300 \times 350 \mu\text{m}$

for *Andreella uncifera*. Among the Cyclostomatida bryozoans, the genus *Tubulipora* is recorded in the shelf-break front, and the presence of non-feeding larvae, viviparity, placentation and polyembryony is common in this order (Nekliudova et al. 2021). Lastly, Porter and Hayward (2004) reported that *Alcyonidium australe* (Order Ctenostomatida) may release gametes and produce planktotrophic larvae.

Asciidiacea

There is a high diversity of reproductive strategies within Asciidiacea (Tunicata), which are related to their organizational type: colonial species (with both sexual and asexual reproduction) and solitary species (with exclusively sexual reproduction). These differences can be observed from order to species taxonomic level. All ascidians are hermaphroditic, although some species are protandrous (Lambert 2005). Sexual reproduction involves the production of lecithotrophic larvae (with a head and tail bearing chordate structures such as a notochord, nerve cord, and pharynx). Larvae swim or float passively (as in some Molgulidae) for a short period before settling on the substrate where the sessile adult individual (or zooid) will remain, formed after larval metamorphosis (Tatián and Lagger 2009). At least twelve different modes of asexual reproduction have been described in colonial ascidians (Monniot et al. 1991), involving the formation of buds from various zooid organs and the regeneration of a new individual, genetically identical to the parent.

Most solitary species produce numerous oocytes that are released into the water for external fertilization; in colonial ascidians (and in some solitary ones), oocytes produced in lower numbers are fertilized in the atrial cavity, within the colony matrix, or in brooding pouches, where larvae develop before being released (Monniot et al. 1991). Information on the sexual reproductive cycles of ascidian species inhabiting the shelf-break front is scarce. In most descriptions, the presence of larvae in brooding (colonial) species is reported at different times of the year. The reproductive cycles of

solitary, non-brooding species can only be inferred through observations, and preferably by histological examination of gonadal development. Diehl (1977) briefly described the larva of *Alloeocarpa incrassata*, a colonial species with internal fecundation that broods inside the atrial cavity (Rocha et al. 2012). Tatián and Lagger (2009) provided information on the months during which mature gonads have been found for some species in Chile, such as *Paramolgula gregaria* (mature gonads in November) and *Cnemidocarpa nordenskjoldi* (mature gonads from December to February). For the genus *Cnemidocarpa*, Rocha et al. (2012) also mentioned the release of gametes without brooding or parental care. In colonies of *Sycozoa sigillinoides* studied in Chile, larvae were recorded in March (Tatián and Lagger 2009); these authors also noted that in the colonial species *Didemnum studeri* sexual reproduction takes place during most of the year, with larvae located beneath the colony surface, as in other members of the family Didemnidae.

DISCUSSION

In the present study, the reproductive modes of 126 benthic invertebrate species (> 1 cm) inhabiting the shelf-break front of the Argentine Sea were investigated, focusing mainly on the most commonly recorded species. Echinodermata resulted in the most studied taxonomic group, while the less studied are Annelida (Polychaeta) and Bryozoa. Within the set of species here studied, a wide range of reproductive strategies coexist. However, species-specific information is available for less than 50% of the species, and only for 5 (4%) of these species does the information originate from studies conducted in the study area. The limited availability of reproductive information derived directly from the study area underscores the need for targeted, species-level reproductive studies in the shelf-break environment, particularly because reproductive traits may vary within species across

their geographical ranges. Consequently, patterns inferred from populations studied elsewhere may not fully reflect local reproductive strategies under the environmental conditions prevailing in the studied area. Nevertheless, the present study represents a valuable starting point, as it provides, for the first time, a comprehensive overview of reproductive modes across the main benthic invertebrate species composing the community as a whole, rather than focusing on single species, families, or higher taxonomic levels. This integrative approach offers a baseline framework upon which future, region-specific reproductive studies can build to refine and validate observed patterns.

Approximately 84% of the species exhibit an indirect life cycle with some type of larva. Dispersal potential to other habitats is enhanced in species with indirect life cycles and longer larval periods, as in some mollusks such as the Patagonian scallop *Zygochlamys patagonica* (Schejter et al. 2010) and the hairy snail *Fusitriton magellanicus* (Cañete et al. 2012), decapod crustaceans such as all the crabs (e.g. Campodónico and Guzmán 1972; Iorio 1983; Lovrich and Thatje 2006) and certain echinoderms such as the basket star *Gorgonocephalus chilensis* (Barboza et al. 2010) and the red ophiuroid *Ophiactis asperula* (Huenten et al. 2025). However, many species are probably capable of increasing their dispersal capabilities by means of strategies such as the existence of a medusa phase in certain hydroids (such as in *Phialella* species, see Blanco et al. 2000), or asexual dispersive stages such as frustules, or through fragmentation as a result of mechanical impact, for example, with the resulting fragments potentially being transported by local currents, as reported for hydroids (Jaubert and Genzano 2011) and sponges in reproductive stages (Maldonado and Uriz 1999) in other regions of the world. The Malvinas Current and the oceanographic processes occurring along the shelf-break front (Franco et al. 2017) may facilitate the general dispersion of the organisms, as demonstrated for some species (e.g. Torres Alberto et al. 2025). The Patagonian scallop (*Z. patagonica*), one of the

most extensively studied species in the shelf-break front, provides an illustrative example in which available genetic evidence suggests that, although planktotrophic larvae may be transported along the front, additional processes interact with larval dispersal to shape gene flow and biogeographic patterns across scallop beds (Trucco and Lasta 2008).

A biogeographical perspective is relevant because benthic faunas in the Argentine Sea are structured by large-scale oceanographic and hydrographic patterns. A transition between distinct biogeographic provinces is recognized along the Argentine shelf-break front, where benthic assemblages reflect the boundary between the subantarctic Magellanic (Patagonian) Province and the temperate Argentine Province. The Magellanic Province is characterized by benthic communities dominated by subantarctic taxa, strongly influenced by cold waters transported northward by the Malvinas Current, whereas the Argentine Province supports predominantly temperate benthic assemblages, with subantarctic elements largely confined to its southern boundary and to frontal environments (Balech and Ehrlich 2008). These water mass dynamics contribute to differences in faunal composition along both latitudinal and depth gradients, affecting the distribution of benthic invertebrates across the continental margin and probably their reproductive strategies as well. Moreover, previous work on benthic communities in the Argentine Sea has highlighted how depth, substrate type and oceanographic conditions shape species distribution and community structure across the coastal areas, shelf and upper slope (Bastida et al. 2007; Bremec and Giberto 2017). The present study area covers soft bottoms at 80-120 m depth between 37° S and 45° S and showed the presence of most of the conspicuous invertebrates distributed along the Magellanic Province according to a generalized scheme based on an extensive review of georeferenced data (Souto 2014).

It is interesting to note that more than half of the species provide some form of parental care. This may involve incubating offspring within their bodies or producing protective egg capsules, from

which larvae or juveniles are later released. Such strategies protect most of the developmental stages but often result in juveniles with very limited or no dispersal capacity. Examples include the coral *Flabellum curvatum* (Waller et al. 2008), the anemone *Actinostola crassicornis* (Lauretta et al. 2020), the sea urchin *Austracidarid canaliculata* (Flores et al. 2019), and gastropods of the families Volutidae and Muricidae (Penchaszadeh et al. 1999, 2009; Bigatti et al. 2008; Pastorino and Penchaszadeh 2009). Consequently, these species are likely to occur in more restricted and noticeable patches.

There is no uniformity regarding the reproductive period of the studied species, while some species have a specific reproductive period, others seem to do so throughout the year, without distinction between seasons. However, much of the reliable information for most species comes from populations in other areas of their distribution, as previously mentioned.

This work represents the first comprehensive compilation of reproductive traits of benthic invertebrates from the shelf-break front of the Argentine Sea, integrating information scattered across numerous sources. Although in some cases the data had to be extrapolated from populations from other regions, higher taxonomic levels, or related species due to the lack of species-specific studies in the area, the general overview provided here is novel and highly valuable. By synthesizing these dispersed data, this study offers for the first time a broad picture of the predominant reproductive strategies among benthic invertebrates in this ecologically and economically important region. The information presented here is not only of scientific relevance but also provides essential baseline knowledge to be considered in ecosystem-based fisheries management plans. Understanding reproductive modes and dispersal capacities of the species is fundamental to predicting population connectivity, resilience, and vulnerability to fishing pressure, hydrocarbon exploitation or environmental changes. Consequently, this contribution fills a critical knowledge gap and represents a significant step toward the sustainable

management of benthic communities in the shelf-break front of the Argentine Sea.

ACKNOWLEDGEMENTS

We thank INIDEP librarians for their help looking for some bibliography, and to the colleagues who have sent us their papers. We also thank Lucrecia Allega of the Remote Sensing Program, INIDEP, for the map. This is INIDEP Contribution no 2482.

Data availability

Data generated during this study are available in the CONICET Scientist Repository at <http://hdl.handle.net/11336/273915>.

Author contributions

Laura Schejter: conceptualization; investigation; data curation; writing original; review and editing; visualization; validation; supervision. Claudia S. Bremec: investigation; data curation; validation; writing original and review. Mariana Escolar: investigation; data curation; validation; writing original and review. Gabriel N. Genzano: investigation; data curation; validation; writing original and review. Diego A. Giberto: data curation; validation; formal analysis; writing original and review. Mariela Pavón Novarin: investigation; data curation; validation; writing original and review. Marcos Tatián: investigation; data curation; validation; writing original and review.

REFERENCES

ACHA EM, MIANZAN HW, GUERRERO RA, FAVERO M, BAVA J. 2004. Marine fronts at the continental shelves of austral South America. Physical

and ecological processes. *J Mar Syst.* 44: 83-105. DOI: <http://dx.doi.org/10.1016/j.jmarsys.2003.09.005>

ADDAMO AM, REIMER JD, TAVIANI M, FREIWALD A, MACHORDOM A. 2012. *Desmophyllum dianthus* (Esper, 1794) in the scleractinian phylogeny and its intraspecific diversity. *PLoS ONE.* 7 (11): e50215. DOI: <http://dx.doi.org/10.1371/journal.pone.0050215>

ALEMANY D, BELLEGIA M, BLANCO G, DELI ANTONI M, IVANOVIC M, PRANDONI N, RUOCCHI N, TORRES ALBERTO ML, ZAVATTERI A. 2024. Nekton in the Patagonian Shelf-Break Front: fishes and squids. In: ACHA EM, IRIBARNE OO, PIOLA A, editors. *The Patagonian Shelfbreak Front: ecology, fisheries, wildlife conservation.* Cham: Springer. p. 97-136. DOI: https://doi.org/10.1007/978-3-031-71190-9_5

ALTIERI AH. 2003. Settlement cues in the locally dispersing temperate cup coral *Balanophyllum elegans*. *Biol Bull.* 204: 241-245.

ANDERSON DT. 1994. Barnacles: structure, function, development and evolution. London: Chapman and Hall. 357 p.

BAIN BA. 2003. Larval types and a summary of postembryonic development within the Pycnogonida. *Invertebr Reprod Dev.* 43 (3): 193-222.

BALDACCONI R, NONNIS-MARZANO C, GAINO E, CORRIERO G. 2007. Sexual reproduction, larval development and release in *Spongia officinalis* L. (Porifera, Demospongiae) from the Apulian coast. *Mar Biol.* 152: 969-979.

BALECH E, EHRLICH MD. 2008. Esquema biogeográfico del Mar Argentino. *Rev Invest Desarr Pesq.* 19: 45-75.

BARBOZA CAM, MENDES FMM, DALBEN A, TOMMASI LR. 2010. Echinodermata, Ophiuroidea, *Gorgonocephalus* Leach, 1815: first report of the genus for the Brazilian continental margin. *Check List.* 6 (2): 289-291.

BASTIDA R, ZAMPONI MO, ROUX A, BREMEC C, ELÍAS R. 2007. Las comunidades bentónicas. In: CARRETO JI, BREMEC C, editors. *El Mar Ar-*

gentino y sus recursos pesqueros. Tomo 5. El ecosistema marino. Mar del Plata: Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP). p. 91-125.

BERNASCONI I. 1937. Asteroideos argentinos. I. Ptcrasteridae. An Mus Argent Cienc Nat. 39: 167-187.

BERNASCONI I. 1941. Los equinodermos de la expedición del Buque Oceanográfico “Comodoro Rivadavia” A.R.A. Physis. 19: 37-49.

BIGATTI G, MARZINELLI EM, PENCHASZADEH PE. 2008. Seasonal reproduction and sexual maturity in *Odontocymbiola magellanica* (Neogastropoda, Volutidae). Invertebr Biol. 127 (3): 314-326. DOI: <http://dx.doi.org/10.1111/j.1744-7410.2008.00139.x>

BLANCO O, ZAMPONI MO, GENZANO GN. 2000. Campanuliniidae de la Argentina (Coelenterata; Hydrozoa). Rev Mus La Plata Nueva Ser Secc Zool. 14 (163): 267-278.

BLOOM DE. 1976. Feeding, regeneration, and colony formation in the polychaete *Phyllochaetopterus prolifica* (Chaetopteridae). Hopkins Marine Station student papers collection. Final papers Biology. 175H. 45 p.

BOSCH I. 1989. Contrasting modes of reproduction in two Antarctic asteroids of the genus *Poraania*, with a description of unusual feeding and non-feeding larval types. Biol Bull. 177: 77-82.

BOSCH I, BEAUCHAMP KA, STEELE ME, PEARSE JS. 1987. Development, metamorphosis, and seasonal abundance of embryos and larvae of the Antarctic sea urchin *Sterechinus neumayeri*. Biol Bull. 173 (1): 126-135.

BOSCH I, PEARSE J. 1990. Developmental types of shallow-water asteroids of McMurdo Sound, Antarctica. Mar Biol. 104: 41-46. DOI: <https://doi.org/10.1007/BF01313155>

BOUILLON J, GRAVILI C, PAGÈS F, GILI JM, BOERO F. 2006. An introduction to Hydrozoa. Mem Mus Natl Hist Nat. 194. 591 p.

BREMEC C, ESCOLAR M, SCHEJTER L, GENZANO G. (2008) Primary settlement substrate of scallop *Zygochlamys patagonica* (King and Broderip, 1832) (Mollusca: Pectinidae) in fishing grounds in the Argentine Sea. J Shellf Res. 27: 273-280.

BREMEC C, MARECOS A, SCHEJTER L, LASTA M. 2003. Guía técnica para la identificación de invertebrados epibentónicos asociados a los bancos de vieira patagónica (*Zygochlamys patagonica*) en el Mar Argentino. Mar del Plata: Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP). 28 p.

BREMEC C, SCHEJTER L. 2019. *Chaetopterus antarcticus* (Polychaeta: Chaetopteridae) in Argentinian shelf scallop beds: from infaunal to epifaunal life habits. Rev Biol Trop. 67 (5): 39-50.

BREMEC CS, GIBERTO DA, editors. 2017. Comunidades bentónicas en regiones de interés pesquero de la Argentina. Mar del Plata: Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP). 129 p.

BROGGER MI, MARTINEZ MI, PENCHASZADEH PE. 2010. Reproduction of the sea urchin *Arbacia dufresnii* (Echinoidea: Arbaciidae) from Golfo Nuevo, Argentina. J Mar Biol Assoc UK. 90 (7): 1405-1409. DOI: <https://doi.org/10.1017/S0025315410000445>

BRUSCA RC, BRUSCA GJ. 2005. Invertebrados. 2nd ed. Madrid: McGraw Hill Interamericana. 1032 p.

BUHL-MORTENSEN L, HØEG JT. 2006. Reproduction and larval development in three scalpellid barnacles, *Scalpellum scalpellum* (Linnaeus 1767), *Ornatoscalpellum stroemii* (M. Sars 1859) and *Arcoscalpellum michelottianum* (Seguenza 1876), Crustacea: Cirripedia: Thoracica): implications for reproduction and dispersal in the deep sea. Mar Biol. 149: 829-844. DOI: <http://dx.doi.org/10.1007/s00227-006-0263-y>

BUHL-MORTENSEN L, HØEG JT. 2013. Reproductive strategy of two deep sea scalpellid barnacles (Crustacea: Cirripedia: Thoracica) associated with decapods and pycnogonids and first description of a penis in the dwarf males. Org Divers Evol. 13: 545-557. DOI: <http://dx.doi.org/10.1007/s13127-013-0137-3>

BURTON M. 1932. Sponges. Discov Rep. 6: 237-392. DOI: <http://dx.doi.org/10.5962/bhl.part.24>

379

BURTON M. 1940. Las esponjas marinas del Museo Argentino de Ciencias Naturales. Parte 1. An Mus Argentino Cienc Nat Bernardino Rivadavia. 40 (6): 95-121.

BYRNE M. 2006. Life history diversity and evolution in the Asterinidae. *Integr Comp Biol.* 46: 243-254. DOI: <http://dx.doi.org/10.1093/icb/icj033>

CAIRNS SD, POLONIO V. 2013. New records of deep-water Scleractinia off Argentina and the Falkland Islands. *Zootaxa.* 3691: 58-86. DOI: <http://dx.doi.org/10.11646/zootaxa.3691.1.2>

CALEY MJ, CARR MH, HIXON MA, HUGHES TP, JONES GP, MENGE BA. 1996. Recruitment and the local dynamics of open marine populations. *Annu Rev Ecol Syst.* 27: 477-500. DOI: <http://dx.doi.org/10.1146/annurev.ecolsys.27.1.477>

CAMPODÓNICO GI, GUZMÁN L. 1972. Desarrollo larval de *Eurypodium latreillei* Guérin en condiciones de laboratorio. *An Inst Patagonia.* 3 (1-2): 233-247.

CAMPODÓNICO S, ESCOLAR M, GARCÍA J, AUBONE A. 2019. Síntesis histórica y estado actual de la pesquería de vieira patagónica *Zygochlamys patagonica* (King, 1832) en la Argentina. Biología, evaluación de biomasa y manejo. *Mar Fish Sci.* 32 (2): 125-148. DOI: <http://dx.doi.org/10.47193/mafis.3222019121904>

CAMPODÓNICO S, MACCHI G, LASTA M. 2004. Gonocorismo en la vieira patagónica *Zygochlamys patagonica* (King y Broderip, 1832) en el banco Reclutas, Argentina. *Rev Invest Desarr Pesq.* 16: 91-95.

CAMPODÓNICO S, MACCHI G, LOMOVASKY B, LASTA M. 2008. Reproductive cycle of the Patagonian scallop *Zygochlamys patagonica* in the south-western Atlantic. *J Mar Biol Assoc UK.* 88 (3): 603-611. DOI: <http://dx.doi.org/10.1017/S0025315408001653>

CAMPOS B, RAMORINO L. 1981. Huevo, larvas y postlarva de *Entodesma cuneata* (Gray 1828) (Bivalvia: Pandoracea: Lyonsiidae). *Rev Biol Mar.* 17 (2): 229-251.

CAÑETE JI, GALLARDO CS, CÉSPEDES T, CÁRDENAS CA, SANTANA M. 2012. Encapsulated development, spawning and early veliger of the ranellid snail *Fusitriton magellanicus* (Röding, 1798) in the cold waters of the Magellan Strait, Chile. *Lat Am J Aquat Res.* 40: 914-928.

CASTELLANOS ZJ DE. 1967. Catálogo de los moluscos marinos bonaerenses. *Anales CIC.* 8: 9-367.

[CCAMLR] COMMISSION FOR THE CONSERVATION OF ANTARCTIC MARINE LIVING RESOURCES. 2009. Report on the workshop on vulnerable marine ecosystems. La Jolla: SC-CAMLR-XXVIII.

CEPEDA GD, EHRLICH MD, DERISIO CM, SEVERO A, MACHINANDIARENA L, CADAVEIRA M, BETTI P, DO SOUTO M, PANTANO C, ACHA EM. 2024. Zooplanktonic Crustacea and Ichthyoplankton of the Patagonian Shelf-Break Front. In: ACHA EM, IRIBARNE OO, PIOLA A, editors. The Patagonian Shelfbreak Front. Aquatic Ecology Series. Vol. 13. Cham: Springer. DOI: https://doi.org/10.1007/978-3-031-71190-9_4

CLENCH WJ, TURNER RD. 1960. The genus *Callostoma* in the Western Atlantic. *Johnsonia.* 4: 1-80.

COLLIN R. 2000. Development and anatomy of *Nitidiscala tincta* (Carpenter, 1865) (Gastropoda: Epitoniidae). *Veliger.* 43 (4): 302-312.

COOVERT GA. 1986. A review of marginellid egg capsule. *Marginella Marginalia.* 1 (4): 13-19.

DELLATORRE FG, BARÓN PJ. 2008. Multiple spawning and length of embryonic development of *Munida gregaria* in northern Patagonia (Argentina). *J Mar Biol Assoc UK.* 88 (5): 975-981. DOI: <https://doi.org/10.1017/S0025315408001653>

DESAI DV, ANIL AC, VENKAT K. 2006. Reproduction in *Balanus amphitrite* Darwin (Cirripedia: Thoracica): influence of temperature and food concentration. *Mar Biol.* 149: 1431-1441. DOI: <https://doi.org/10.1007/s00227-006-0315-3>

DIEHL M. 1977. Ascidien des Argentinischen Schelfes aus den Grundtrawl-Fängen des FFG "Walther Herwig" auf seiner dritten Sudamerika-Expedition. *Mitt Hambg Zool Mus Inst.* 74: 139-153.

DOGLIOTTI AI, LUTZ VA, SEGURA V. 2014. Estimation of primary production in the southern Argentine continental shelf and shelf-break regions using field and remote sensing data. *Remote Sens Environ.* 140: 497-508. DOI: <http://dx.doi.org/10.1016/j.rse.2013.09.021>

EHRLICH MD, ACHA EM, BETTI P, DO SOUTO M, CADAVEIRA M, MACHINANDIARENA L. 2025. Distribution and abundance of fish larvae in the Patagonian Shelf-break Front. *J Mar Syst.* 250: 104087. DOI: <https://doi.org/10.1016/j.jmarsys.2025.104087>

ERESKOVSKY AV. 2000. Reproduction cycles and strategies of the cold-water sponges *Halisarca dujardini* (Demospongiae, Halisarcida), *Myxilla incrassans* and *Iophon piceus* (Demospongiae, Poecilosclerida) from the White Sea. *Biol Bull.* 198: 77-87. DOI: <http://dx.doi.org/10.2307/1542805>

ESCOLAR M, BREMEC C. 2015. Comunidad de equinodermos en bancos de vieira patagónica asociados al frente de talud en el Mar Argentino. *Rev Invest Desarr Pesq.* 26: 23-36.

ESCOLAR M, HERNÁNDEZ D, BREMEC C. 2011. Spatial distribution, biomass and size structure of *Ctenodiscus australis* (Echinodermata: Asteroidea) in shelf-break areas, Argentine. *Mar Biol Res.* 7: 608-616. DOI: <http://dx.doi.org/10.1080/17451000.2010.528774>

ESCOLAR M, HERNÁNDEZ DR, BREMEC C. 2013. Latitudinal and bathymetric distribution patterns of ophiuroids (Echinodermata: Ophiuroidea) on scallop fishing grounds at the shelf-break frontal system, south-western Atlantic. *Mar Biodiv Rec.* 6: 1-8. DOI: <http://dx.doi.org/10.1017/S1755267213000936>

FAGETTI GE. 1969. The larval development of the spider crab *Libidoclaea granaria* H. Milne Edwards y Lucas under laboratory conditions (Decapoda Brachyura, Majidae, Pisinae). *Crustaceana.* 17 (2): 131-140.

FASSIO G, MODICA MV, ALVARO MC, SCHIAPARELLI S, OLIVERIO M. 2015. Developmental trade-offs in Southern Ocean mollusc kleptoparasitic species. *Hydrobiologia.* 761: 121-141. DOI: <http://dx.doi.org/10.1007/s10750-015-2318-x>

FALKNER I, BYRNE M. 2003. Reproduction of *Ophiactis resiliens* (Echinodermata: Ophiuroidea) in New South Wales with observations on recruitment. *Mar Biol.* 143: 459-466.

FAUTIN DG. 1984. More Antarctic and Subantarctic sea anemones (Coelenterata: Corallimorpharia and Actiniaria). *Biology of the Antarctic Seas XVI. Ant Rea Ser.* 41: 1-42.

FEEHAN KA, WALLER RG, HÄUSSERMANN V. 2019. Highly seasonal reproduction in deep-water emergent *Desmophyllum dianthus* (Scleractinia: Caryophylliidae) from the northern Patagonian fjords. *Mar Biol.* 166: 52. DOI: <https://doi.org/10.1007/s00227-019-3495-3>

FLORES JN, BLOGGER MI, PENCHASZADEH PE. 2019. Reproduction and development of the brooding sea urchin *Austrocidaris canaliculata* from deep-sea off Argentina. *Deep-Sea Res Pt I.* 143: 35-42. DOI: <http://dx.doi.org/10.1016/j.dsr.2018.11.012>

FURNSHELL JA. 2015. Larval stages of two deep sea pycnogonids. *Invert. Zool.* 12 (2): 197-205. <https://doi.org/10.15298/invertzool.12.2.05>

FRANCO B, PALMA ED, COMBES V, LASTA ML. 2017. Physical process controlling passive larval transport at the Patagonian shelf break. *J Sea Res.* 124: 17-25. DOI: <https://doi.org/10.1016/j.seares.2017.04.012>

FRASCHETTI S, GIANGRANDE A, TERLIZZI A, BOERO F. 2003. Pre- and post-settlement events in benthic community dynamics. *Oceanol Acta.* 25 (6): 285-295. DOI: [http://dx.doi.org/10.1016/S0399-1784\(02\)01194-5](http://dx.doi.org/10.1016/S0399-1784(02)01194-5)

FRAYSSE CP, BOY CC, BECKER YA, CALCAGNO JA, PÉREZ AF. 2020a. Brooding in the Southern Ocean: the case of the pterasterid sea star *Diplopteroaster verrucosus* (Sladen, 1882). *Biol Bull.* 239 (1): 1-12. DOI: <https://doi.org/10.1086/709664>

FRAYSSE CP, PÉREZ AF, CALCAGNO JA, BOY CC. 2020b. Energetics and development modes of Asteroidea (Echinodermata) from the Southwest-

ern Atlantic Ocean including Burdwood Bank/MPA Namuncurá. *Polar Biol.* 43: 175-186. DOI: <https://doi.org/10.1007/s00300-020-02621-6>

GAITÁN E, GIBERTO D, ESCOLAR M, BREMEC C. 2014. Fauna bentónica asociada a los fondos de pesca en la plataforma patagónica entre 41° y 48° S. Resultados de la campaña de evaluación de merluza EH-04/13. *Inf Invest INIDEP* Nº 35/2014. 19 p.

GAITÁN E, SOUTO V. 2020. Comunidades de macroinvertebrados bentónicos en el área del efectivo norte de merluza común (*Merluccius hubbsi*). Comparación entre los años 2012 y 2016. *Frente Marít.* 25: 53-77.

GAMBI MC, GIANGRANDE A, PATTI FP. 2000. Comparative observations on reproductive biology of four species of *Perkinsiana* (Polychaeta: Sabellidae: Sabellinae). *Bull Mar Sci.* 67 (1): 299-309.

GENZANO GN. 1994. La comunidad hidroide del intermareal rocoso de Mar del Plata (Argentina). I. Estacionalidad, abundancia y períodos reproductivos. *Cah Biol Mar.* 35: 289-303.

GENZANO GN. 2002. Associations between pycnogonids and hydroids from the Buenos Aires littoral zone, with observations on the semi-parasitic life cycle of *Tanystylum orbiculare* (Amphelididae). *Sci Mar.* 66 (1): 83-92. DOI: <http://dx.doi.org/10.3989/scimar.2002.66n183>

GENZANO GN, GIBERTO D, SCHEJTER L, BREMEC C, MERETTA P. 2009. Hydroid assemblages from Southwestern Atlantic Ocean (34-42°S). *Mar Ecol.* 30: 33-46. DOI: <https://doi.org/10.1111/j.1439-0485.2008.00247.x>

GENZANO GN, ZAMPONI MO, EXCOFFON AC, ACUÑA FH. 2002. Hydroid populations from sublitoral outcrops off Mar del Plata, Argentina: abundance, seasonality and reproductive periodicity. *Ophelia.* 56 (3): 161-170.

GIANGRANDE A. 1997. Polychaete reproductive patterns, life cycles and life histories: an overview. In: ANSELL A, GIBSON R, BARNES M, editors. London: UCL Press. *Oceanogr Mar Biol Annu Rev.* 35: 323-386.

GIANGRANDE A, GERACI S, BELMONTE G. 1994. Life cycle and life-history diversity in marine invertebrates and the implication in community dynamics. In: ANSELL A, GIBSON R, BARNES M, editors. London: UCL Press. *Oceanogr Mar Biol Annu Rev.* 32: 305-333.

GIBERTO DA, SCHEJTER L, ROMERO MV, BELLEGGIA M, BREMEC CS. 2024. Benthic assemblages and biodiversity patterns of the shelf-break front. In: ACHA EM, IRIBARNE OO, PIOLA AR, editors. *The Patagonian shelfbreak front. Ecology, fisheries, wildlife conservation.* Cham: Springer. p. 137-164 DOI: https://doi.org/10.1007/978-3-031-71190-9_6

GIL DG, ESCUDERO G, ZAIXSO HE. 2011. Brooding and development of *Anasterias minuta* (Asteroidea: Forcipulata) in Patagonia, Argentina. *Mar Biol.* 158: 2589-2602. DOI: <http://dx.doi.org/10.1007/s00227-011-1760-1>

GIL DG, LOPRETTI EC, ZAIXSO HE. 2020. Reproductive timing and synchronized reproduction of the sea urchin *Pseudechinus magellanicus* (Echinoidea: Temnopleuridae) in central Patagonia, Argentina. *Mar Biol Res.* 16: 311-326. DOI: <https://doi.org/10.1080/17451000.2020.1772493>

GIMÉNEZ J, PENCHASZADEH P. 2010. Brooding in *Psolus patagonicus* (Echinodermata: Holothuroidea) from Argentina, SW Atlantic Ocean. *Helg Mar Res.* 64: 21-26. DOI: <http://dx.doi.org/10.1007/s10152-009-0161-z>

GUERRERO RA, PIOLA AR. 1997. Masas de agua en la plataforma continental. In: BOSCHI EE, editor. *El Mar Argentino y sus Recursos Pesqueros. Tomo 1. Antecedentes históricos de las exploraciones en el mar y las características ambientales.* Mar del Plata: Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP). p. 107-118.

GUINDER VA, FERRONATO C, DOGLIOTTI AI, SEGURA V, LUTZ V. 2024. The Phytoplankton of the Patagonian Shelf-Break Front. In: ACHA EM, IRIBARNE OO, PIOLA A, editors. *The Patagonian Shelfbreak Front. Aquatic Ecology Se-*

ries. Vol. 13. Cham: Springer. DOI: https://doi.org/10.1007/978-3-031-71190-9_3

HÄUSSERMANN V, FÖRSTERRA G, editors. 2009. Fauna marina bentónica de la Patagonia chilena. Santiago: Nature in Focus. 1000 p.

HELM C, BOK M, HUTCHINGS P, KUPRIYANOVA E, CAPA M. 2018. Developmental studies provide new insights into the evolution of sense organs in *Sabellariidae* (Annelida). *BMC Evol Biol.* 18: 149. DOI: <http://dx.doi.org/10.1186/s12862-018-1263-5>

HENDLER G. 1991. Echinodermata: Ophiuroidea. In: GIESE A, PEARSE JS, PEARSE VS, editors. *Reproduction of marine invertebrates*. Pacific Grove: Boxwood Press. p. 351-511.

HERNÁNDEZ DA. 1981. Holothuroidea de Puerto Deseado (Santa Cruz, Argentina). *Rev Mus Argent Cienc Nat.* 4: 151-168

HICKMAN CP, ROBERTS LS, LARSON A, editors. 2001. *Integrated principles of zoology*. New York: McGraw-Hill.

HOLMES S. 1997. Notes on gamete release and fertilisation in *Calliostoma zizyphinum* (L.) (Gastropoda; Trochidae). *J Mollusc Stud.* 63: 471-473. DOI: <http://dx.doi.org/10.1093/mollus/63.3.471>

HOLYOAK AR. 1988. Spawning and larval development of the trochid gastropod *Calliostoma ligatum* (Gould, 1849). *The Veliger.* 30 (4): 369-371.

HUENTEN D, DE ARANZAMENDI MC, BROGGER MI, 2025. Evidencias de alta diversidad genética en *Ophioactis asperula* (Ophiuroidea) del Atlántico Sudoccidental mediante el análisis del gen COI. VI Congreso Latinoamericano de Equinodermos. Book of Abstracts. p.78.

HYMAN LH. 1955. The invertebrates: Echinodermata. The Coelomate Bilateria. Vol. IV. New York: McGraw-Hill. 763 p.

IORIO MI. 1983. Estudios larvales del cangrejo *Peltarion spinosulum* (White) (Crustacea, Decapoda, Brachyura, Atelecyclidae). *Physis (A).* 41 (101): 143-156.

JACKSON JBC. 1983. Biological determinants of present and past sessile animal distributions. In: TEVESZ MJS, McCALL PL, editors. *Biotic interactions in recent and fossil benthic communities. Topics in Geobiology.* 3. Boston: Springer. p. 39-120. DOI: http://dx.doi.org/10.1007/978-1-4757-0740-3_2

JANOSIK AM, MAHON AR, SCHELTEMA RS, HALANYCH KM. 2008. Life history of the Antarctic sea star *Labidiaster annulatus* (Asteroidea: Labidiasteridae) revealed by DNA barcoding. *Antarct Sci.* 20: 563-564. DOI: <http://dx.doi.org/10.1017/S0954102008001533>

JAUBET ML, GENZANO GN. 2011. Seasonality and reproductive periods of the hydroid *Clytia gracilis* in temperate littoral ecosystems. Is asexual reproduction the prime mechanism in maintaining populations? *Mar Biol Res.* 7: 804-811. DOI: <https://doi.org/10.1080/17451000.2011.578650>

JOHNSON WS, STEVENS M, WATLING L. 2001. Reproduction and development of marine peracardians. *Adv Mar Biol.* 39: 105-260. DOI: [http://dx.doi.org/10.1016/S0065-2881\(01\)39009-0](http://dx.doi.org/10.1016/S0065-2881(01)39009-0)

KAHNG SE, BENAYAHU Y, LASKER HR. 2011. Sexual reproduction in octocorals. *Mar Ecol Prog Ser.* 443: 265-283. DOI: <http://dx.doi.org/10.3354/meps09414>

KEMPF SC, WILLOWS AOD. 1977. Laboratory culture of the Nudibranch *Tritonia diomedea* bergh (Tritoniidae: Opisthobranchia) and some aspects of its behavioral development. *J Exp Mar Biol Ecol.* 30 (3): 261-276. DOI: [https://doi.org/10.1016/0022-0981\(77\)90035-1](https://doi.org/10.1016/0022-0981(77)90035-1)

KEMPF SC, TODD CD. 1989. Feeding potential in the lecithotrophic larvae of *Adalaria proxima* and *Tritonia hombergi*: an evolutionary perspective. *J Mar Biol Assoc UK.* 69: 659-682. DOI: <https://doi.org/10.1017/S0025315400031052>

KINO S. 2010. Reproduction and early life history of sea urchins, *Arbacia dufresnei* and *Pseudechinus magellanicus*, in Chiloe Island and Reloncavi sound, Chile. *Aquacult Sci.* 58 (1): 65-73.

KIRTLEY DW. 1994. A review and taxonomic revision of the family *Sabellariidae* Johnston, 1865

(Annelida; Polychaeta). Sabecon Press Sci Ser. 1: 1-223.

KNIGHT-JONES P, BOWDEN N. 1984. Incubation and scissiparity in Sabellidae (Polychaeta). J Mar Biol Assoc UK. 64: 809-818. DOI: <https://doi.org/10.1017/S0025315400047251>

KOUTSOUVELI V, TABOADA S, MOLES J, CRISTOBAL J, RÍOS P, BERTRAN A, SOLÀ J, AVILA C, RIESGO A. 2018. Insights into the reproduction of some Antarctic dendroceratid, poecilosclerid, and haplosclerid demosponges. PLoS ONE. 13 (2): e0192267. DOI: <https://doi.org/10.1371/journal.pone.0192267>

KUPRIANOVA EK, RZHAVSKY AV, TEN HOVE HA. 2019. Serpulidae Rafinesque, 1815. In: PURSCHKE G, BÖGGEMANN M, WESTHEIDE W, editors. Handbook of zoology. Vol. 2. Pleistoannelida, Sedentaria II. Berlin: De Gruyter. p. 213-275. DOI: <https://doi.org/10.1515/9783110291681-006>

LAMBERT CC. 2005. Historical introduction, overview, and reproductive biology of the protochordates. Can J Zool. 83: 1-7. DOI: <https://doi.org/10.1139/z04-160>

LAURETTA D, VIDOS C, MARTINEZ M, PENCHASZADEH PE. 2020. Brooding in the deep-sea sea anemone *Actinostola crassicornis* (Hertwig, 1882) (Cnidaria: Anthozoa: Actiniaria) from the southwestern Atlantic Ocean. Polar Biol. 43: 1353-1361. DOI: <https://doi.org/10.1007/s00-020-02713-3>

LEBOUR MV. 1935. 10. The Echinospira Larvae (Mollusca) of Plymouth. Proc Zool Soc London. 105 (1): 163-174. DOI: <https://doi.org/10.1111/j.1469-7998.1935.tb06239.x>

LEMAITRE R, McLAUGHLIN PA. 1992. Descriptions of megalopa and juveniles of *Sympagurus dimorphus* (Studer, 1883), with an account of the Parapaguridae (Crustacea: Anomura: Paguroidea) from Antarctic and Subantarctic waters. J Nat Hist. 26: 745-768.

LIEBERKIND I. 1926. *Ctenodiscus australis* Lütken. A brood-protecting asteroid. Vidensk Medd Dan Naturhist Foren. 82: 183-196.

LINSE K, PAGE TJ. 2003. Evidence of brooding in Southern Ocean limid bivalves. J Mollusc Stud. 69: 290-293. DOI: <http://dx.doi.org/10.1093/mollus/69.3.290>

LÓPEZ-GAPPA J, LANDONI NA. 2009. Space utilisation patterns of bryozoans on the Patagonian scallop *Psychrochlamys patagonica*. Sci Mar. 73: 161-171. DOI: <http://dx.doi.org/10.3989/scimar.2009.73n1161>

LOVRICH GA, THATJE S. 2006. Reproductive and larval biology of the sub-Antarctic hermit crab *Pagurus comptus* reared in the laboratory. J Mar Biol Assoc UK. 86: 743-749. DOI: <http://dx.doi.org/10.1017/S0025315406013658>

LUXMOORE RA. 1982. The reproductive biology of some serolid isopods from the Antarctic. Polar Biol. 1: 3-11. DOI: <https://doi.org/10.1007/BF00568750>

MALCHUS N, WARÉN A. 2005. Shell and hinge morphology of juvenile *Limopsis* (Bivalvia: Arcoida): implications for limopsid evolution. Mar Biol Res. 1: 350-364. DOI: <https://doi.org/10.1080/17451000500384100>

MALDONADO M. 2006. The ecology of the sponge larva. Can J Zool. 84 (2): 175-194. DOI: <https://doi.org/10.1139/z05-177>

MALDONADO M, BERGQUIST PR. 2006. Phylum Porifera. In: YOUNG CM, editor. Atlas of marine invertebrate larvae. Barcelona: Elsevier. p. 21-50.

MALDONADO M, BERGQUIST P, YOUNG CM, SEWELL MA, RICE ME. 2002. Atlas of marine invertebrate larvae. London: Academic Press. p. 21-50.

MALDONADO M, RIESGO A. 2009. Reproduction in the phylum Porifera: a synoptic overview. Treb Soc Catalana Biol. 59: 29-49.

MALDONADO M, URIZ MJ. 1999. Sexual propagation by sponge fragments. Nature. 398: 476. DOI: <https://doi.org/10.1038/19007>

MARTIN JP, BASTIDA R, ROUX A. 1995. Aspectos biológicos y ecológicos de *Limopsis hirtella* (Mollusca, Bivalvia) en la plataforma profunda frente a Mar del Plata (Argentina). Comun Soc

Malacol Urug. 7 (68-69): 403-416.

MARTÍNEZ MI, ALBA-POSSE EJ, LAURETTA D, PENCHASZADEH PE. 2020. Reproductive features in the sea cucumber *Pentactella perrieri* (Ekman, 1927) (Holothuroidea: Cucumariidae): a brooding hermaphrodite species from the southwestern Atlantic Ocean. Polar Biol. 43: 1383-1389. DOI: <https://doi.org/10.1007/s00300-020-02715-1>

MARTÍNEZ MI, GIMÉNEZ J, PENCHASZADEH PE. 2011. Reproductive cycle of the sea cucumber *Psolus patagonicus* Ekman 1925, off Mar del Plata, Buenos Aires, Argentina. Invert Rep Dev. 55: 124-130. DOI: <https://doi.org/10.1080/07924259.2011.553423>

MARZINELLI E, BIGATTI G, GIMÉNEZ J, PENCHASZADEH PE. 2006. Reproduction of the sea urchin *Pseudechinus magellanicus* (Echinoidea: Temnopleuridae) from Golfo Nuevo, Argentina. Bull Mar Sci. 79: 127-136.

MAUNA C, FRANCO B, BALDONI A, ACHA M, LASTA ML, IRIBARNE O. 2008. Cross-frontal variations in adult abundance and recruitment of Patagonian scallop (*Zygochlamys patagonica*) at the SW Atlantic Shelf Break Front. ICES J Mar Sci. 65: 1184-1190. DOI: <https://doi.org/10.1093/icesjms/fsn098>

MCCAMMON HM. 1973. The ecology of *Magellania venosa*, an articulate brachiopod. J Paleont. 47 (2): 266-278.

MCEDWARD LR, MINER BG. 2001. Larval and life cycle patterns in echinoderms. Can J Zool. 79: 1125-1170. DOI: <https://doi.org/10.1139/z00-218>

MCFADDEN CS, DONAHUE R, HADLAND BK, WESTON R. 2001. A molecular phylogenetic analysis of reproductive trait evolution in the soft coral genus *Alcyonium*. Evolution. 55 (1): 54-67. DOI: <https://doi.org/10.1111/j.0014-3820.2001.tb01272.x>.

MEIDLINGER K, TYLER PA, PECK LS. 1998. Reproductive patterns in the Antarctic brachiopod *Liothyrella uva*. Mar Biol. 132: 153-162. DOI: <https://doi.org/10.1007/s002270050381>

MILEIKOVSKY SA. 1971. Types of larval development in marine bottom invertebrates, their distribution and ecological significance: a re-evaluation. Mar Biol. 10: 193-213. DOI: <https://doi.org/10.1007/BF00352809>

MONNIOT C, MONNIOT F, LABOUTE P. 1991. Coral reef ascidians of New Caledonia. Paris: Orstom. p. 1-249.

MOREIRA PS. 1973. The biology of species of *Serolis* (Crustacea, Isopoda, Flabellifera): reproductive behavior of *Serolis polaris* Richardson, 1911. Bol Inst Oceanogr Sao Paulo. 22: 109-122. DOI: <https://doi.org/10.1590/S0373-55241973000100006>

MORTENSEN T. 1913. Some new echinoderms from Greenland. Videnskabelige Meddelelser fra Dansk Naturhistorisk Forening. 66: 37-43.

MORTENSEN T. 1936. Echinoidea and Ophiroidea. Discov Rep. 12: 199-348.

MORTENSEN TH. 1920. Studies in the development of crinoids. Vol. 16. Washington: Carnegie Institution of Washington. 94 p.

MUIRHEA DA, TYLER PA. 1986. Reproductive biology and growth of the genus *Epizoanthus* (Zoanthidea) from the North-East Atlantic. J Mar Biol Assoc UK. 66: 131-143. DOI: <https://doi.org/10.1017/S0025315400039709>

MUNIAIN C, GALLARDO CS, PENCHASZADEH PE. 2007. Reproductive biology of the nudibranch *Doris fontainei* d'Orbigny, 1835 (Gastropoda: Opisthobranchia) from the magellanic region. Nautilus. 121 (3): 139-145

MUNIAIN C, ORTEA J, RODRÍGUEZ G. 1992. Re-descripción de *Neodoris carvi* Marcus, 1955 de las costas de Patagonia, con notas sobre las relaciones entre los géneros *Archidoris* y *Neodoris*. Iberus. 10: 105-111. DOI: <https://doi.org/10.5281/zenodo.4642746>

NAKAOKA M, OHTA S. 1998. Seasonal variation in reproduction and population structure of the bivalve *Limopsis tajimae* in the upper bathyal zone of Suruga Bay, Japan. Mar Biol. 132: 471-481.

NEVES BM, WAREHAM HAYES V, HERDER E, HEDGES

K, GRANT C, ARCHAMBAULT P. 2020. Cold-water soft corals (Cnidaria: Nephtheidae) as habitat for juvenile basket stars (Echinodermata: Gorgonocephalidae). *Front Mar Sci.* 7: 547896. DOI: <https://doi.org/10.3389/fmars.2020.547896>

NEKLIUDOVA UA, SCHWAHA TF, KOTENKO ON, GRUBER D, CYRAN N, OSTROVSKY AN. 2021. Three in one: evolution of viviparity, coenocytic placenta and polyembryony in cyclostome bryozoans. *BMC Ecol Evo.* 21: 54. DOI: <https://doi.org/10.1186/s12862-021-01775-z>

NILSSON-CANTELL CA. 1930. Thoracic cirripedes collected in 1925-1927. *Discov Rep.* 2: 223-260.

NISHI E. 1996. Asexual Reproduction in the Colonial Polychaete *Spiochaetopterus costarum costarum* (Claparede 1868) (Annelida: Chaetopteridae) in Okinawa, Japan. *Nat Hist Res.* 4 (1): 37-40.

ORLER PM. 1992. Biología reproductiva comparada de *Pseudechinus magellanicus* y *Loxechinus albus*, equinoideos del Canal Beagle [PhD thesis]. La Plata: Universidad Nacional de La Plata.

ORR V. 1962. The drilling habit of *Capulus danieli* (Crosse) (Mollusca: Gastropoda). *Veliger.* 5: 63-67. DOI: <https://doi.org/10.5281/zenodo.16694119>

OSTROVSKY AN. 2008. The parental care in cheilosome bryozoans: a historical review. In: WYSE JACKSON PN, SPENCER JONES ME, editors. *Annals of Bryozoology 2: aspects of the history of research of bryozoans*. Dublin: International Bryozoology Association. p. 211-245.

OSTROVSKY AN. 2021. Reproductive strategies and patterns in marine invertebrates: diversity and evolution. *Paleont J.* 55 (7): 803-810. DOI: <https://doi.org/10.1134/S003103012107008X>

OSTROVSKY AN, GORDON DP, LIDGARD S. 2009. Independent evolution of matrotrophy in the major classes of Bryozoa: transitions among reproductive patterns and their ecological background. *Mar Ecol Prog Ser.* 378: 11-124. DOI: <https://doi.org/10.3354/meps07850>

OSTROVSKY AN, VÁVRA N, PORTER JS. 2008. Sexual reproduction in gymnolaemate Bryozoa: history and perspectives of the research. In: WYSE JACKSON PN, SPENCER JONES ME, editors. *Annals of bryozoology 2: aspects of the history of research of bryozoans*. Dublin: International Bryozoology Association. p. 117-210.

PARKER G, PATERLINI MC, VIOLANTE RA. 1997. El fondo marino. In: BOSCHI EE, editor. *El Mar Argentino y sus recursos pesqueros. Tomo 1. Antecedentes históricos de las exploraciones en el mar y las características ambientales*. Mar del Plata: Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP). p. 65-88.

PASTORINO G, PENCHASZADEH PE. 1999. On the egg capsules of *Epitonium georgettinum* (Kiener, 1839) (Gastropoda: Epitoniidae) from Patagonian Shallow Waters. *Veliger.* 42 (2): 188-190.

PASTORINO G, PENCHASZADEH PE. 2002. Spawn of the Patagonian gastropod *Pareuthria plumbea* (Philippi, 1844) (Buccinidae). *Nautilus.* 116 (3): 105-108.

PASTORINO G, PENCHASZADEH PE. 2009. Egg capsules, egg and embryos of *Trophon acanthodes* (Gastropoda: Muricidae) and its new generic position. *J Mollusc Stud.* 75: 337-341. DOI: <https://doi.org/10.1093/mollus/eyp024>

PASTORINO G, PÍO MJ, GIMÉNEZ J. 2014. The egg capsules and embryos of the Patagonian astropod *Trophon plicatus* (Lightfoot, 1786) (Caenogastropoda: Trophoninae) with remarks on the taxonomy of the Southwestern Atlantic Trophoninae. *J Mollusc Stud.* 80: 213-218. DOI: <https://doi.org/10.1093/mollus/eyu007>

PAWLIK JR. 1992. Chemical ecology of the settlement of benthic marine invertebrates. *Oceanogr Mar Biol Annu Rev.* 30: 273-335.

PAWLIK JR, O'SULLIVAN JB, HARASEWYCH MG, 1988. The egg capsules, embryos, and larvae of *Cancellaria cooperi* (Gastropoda: Cancellariidae). *Nautilus.* 102 (2): 47-53.

PECK LS, MEIDLINGER K, TYLER PA. (2001) Developmental and settlement characteristics of the Antarctic brachiopod *Liothyrella uva* (Brederip, 1833). In: BRUNTON CHC, COCKS LRM, LONG

SL, editors. Brachiopods past and present. London: Taylor and Francis. p. 80-90. DOI: <https://doi.org/10.1201/9780203210437.ch9>

PECK LS, ROBINSON K. 1994. Pelagic larval development in the brooding Antarctic brachiopod *Liothyrella uva*. *Mar Biol.* 120: 279-286. DOI: <https://doi.org/10.1007/BF00349689>

PENCHASZADEH PE, DE MAHIEU GC. 1975. Reproducción de gasterópodos prosobranquios del Atlántico Sudoccidental. *Cymatiidae*. *Physis (A)*. 34 (89): 445-452.

PENCHASZADEH PE, MIOSLAVICH P, LASTA M, COSTA MS. 1999. Egg capsules in the genus *Adelomelon* (Caenogastropoda: Volutidae) from the Atlantic Coast of South America. *Nautilus.* 113 (2): 56-63.

PENCHASZADEH PE, SÁNCHEZ ANTELO C, ZABALA S, BIGATTI G. 2009. Reproduction and im- posex in the edible snail *Adelomelon ancilla* from northern Patagonia, Argentina. *Mar Biol.* 156: 1929-1939. DOI: <https://doi.org/10.1007/s00227-009-1225-y>

PÉREZ AF, BOY CC, CALCAGNO J, MALANGA G. 2015. Reproduction and oxidative metabolism in the brooding sea star *Anasterias antarctica* (Lütken, 1957). *J Exp Mar Biol Ecol.* 463: 150-157. DOI: <https://doi.org/10.1016/j.jembe.2014.11.009>

PÉREZ AF, GIL DG, RUBILAR T. 2014. Echinodermata. In: CALCAGNO J, editor. Los invertebrados marinos. Buenos Aires: Vázquez Mazzini. p. 295-316.

PÉREZ-BARROS P, THATJE S, CALCAGNO JA, LOVRICH GA. 2007. Larval development of the subantarctic squat lobster *Munida subrugosa* (White, 1847) (Anomura: Galatheidae), reared in the laboratory. *J Exp Mar Biol Ecol.* 352: 35-41. DOI: <https://doi.org/10.1016/j.jembe.2007.06.035>

PERTOSSI RM, BROGGER MI, PENCHASZADEH P, MARTÍNEZ MI. 2019. Reproduction and developmental stages in the crinoid *Isometra vivipara* Mortensen, 1917 from the southwestern Atlantic. *Polar Biol.* 42: 807-816. DOI: <https://doi.org/10.1007/s00300-019-02477-5>

PERTOSSI RM, MARTÍNEZ MI. 2022. Reproductive biology of the brooding feather star *Phrixometra nutrix*, from the southwestern Atlantic. *Deep-Sea Res Pt I.* 189: 103874. DOI: <https://doi.org/10.1016/j.dsr.2022.103874>

PERTOSSI RM, PENCHASZADEH P, MARTÍNEZ MI. 2021. Brooding comatulids from the southwestern Atlantic, Argentina (Echinodermata: Crinoidea). *Mar Biodiv.* 4: 51-59. DOI: <https://doi.org/10.1007/s12526-021-01194-9>

PFOH M, FRAYSSE C, BAGUR M, LOVRICH G, FLORENTÍN O, PÉREZ A, 2025. Hermaphroditism and preliminary reproductive study of the sea urchin, *Pseudechinus magellanicus*, in the Beagle Channel (Tierra del Fuego, Argentina). *Rev Mus Argent Cienc Nat.* 27 (1): 59-73.

PÍA-FERNÁNDEZ J, BELÉN-CHAAR F, EPHERRA L, GONZÁLEZ-ARAVENA J-M, RUBILAR T. 2021. Embryonic and larval development is conditioned by water temperature and maternal origin of eggs in the sea urchin *Arbacia dufresnii* (Echinodermata: Echinoidea). *Rev Biol Trop.* 69 (1): S452-S463. DOI: <https://doi.org/10.15517/rbt.v69iSuppl.1.46384>

PIOLA AR, BODNARIUK N, COMBES V, FRANCO BC, MATANO RP, PALMA ED, ROMERO SI, SARCENO M, UCARRIET MM. 2024. Anatomy and dynamics of the Patagonia shelf-break front. In: ACHA EM, IRIBARNE OO, PIOLA AR, editors. The Patagonian shelfbreak front. Ecology, fisheries, wildlife conservation. Cham: Springer. p. 17-48. DOI: https://doi.org/10.1007/978-3-031-71190-9_2

PORTER JS, HAYWARD PJ. 2004. Species of *Alcyoniumidium* (Bryozoa: Ctenostomata) from Antarctica and Magellan Strait, defined by morphological, reproductive and molecular characters. *J Mar Biol Assoc UK.* 84: 253-265. DOI: <https://doi.org/0.1017/S0025315404009129h>

QUINTANILLA E, GILI JM, LÓPEZ-GONZÁLEZ PJ, TSOUNIS G, MADURELL T, FIORILLO I, ROSSI S. 2013. Sexual reproductive cycle of the epibiotic soft coral *Alcyonium coralloides* (Octocorallia,

Alcyonacea). *Aquat Biol.* 18: 113-124. DOI: <https://doi.org/10.3354/ab00493>

RAMÓN M. 1990. Spawning and development of *Calliostoma granulatum* in the Mediterranean Sea. *J Mar Biol Assoc UK.* 70 (2): 321-328. DOI: <https://doi.org/10.1017/S0025315400035438>

RIEMANN-ZÜRNECK K. 1978. Actiniaria des Südwestatlantik IV. *Actinostola crassicornis* (Hertwig, 1882) mit einer Diskussion verwandter Arten. *Veröff Inst Meeresforsch Bremerhaven.* 17: 65-85.

RISTEDT H. 1991. Ancestrula and early astogeny of some anascan Bryozoa: their taxonomic importance and possible phylogenetic implications. *Bull Soc Sci Nat Ouest Fr Mem HS.* 1: 371-382.

RIVADENEIRA PA, BROGGER MI, PENCHASZADEH PE. 2017. Aboral brooding in the deep-water sea star *Ctenodiscus australis* Lütken, 1871 (Asteroidea) from the Southwestern Atlantic. *Deep-Sea Res Pt I.* 123: 105-109. DOI: <https://doi.org/10.1016/j.dsr.2017.03.011>

ROBERTS D, RITTSCHOF D, HOLM E, SCHMIDT AR. 1991. Factors influencing initial larval settlement: temporal, spatial and surface molecular components. *J Exp Mar Biol Ecol.* 150: 203-211. DOI: [https://doi.org/10.1016/0022-0981\(91\)90068-8](https://doi.org/10.1016/0022-0981(91)90068-8)

ROCHA RM, ZANATA TB, MORENO TR. 2012. Keys for the identification of families and genera of Atlantic shallow water ascidians. *Biota Neotrop.* 12 (1): 269-303. DOI: <https://doi.org/10.1590/S1676-06032012000100022>

RODRÍGUEZ E, LÓPEZ-GONZÁLEZ P. 2013. New records of Antarctic and Sub-Antarctic sea anemones (Cnidaria, Anthozoa, Actiniaria and Corallimorpharia) from the Weddell Sea, Antarctic Peninsula, and Scotia Arc. *Zootaxa.* 3624: 1-100. DOI: <https://doi.org/10.11646/zootaxa.3625.1.1>

ROMERO MC, LOVRICH GA, TAPELLA F, THATJE S. 2004. Feeding ecology of the crab *Munida subrugosa* (Decapoda: Anomura: Galatheidae) in the Beagle Channel, Argentina. *J Mar Biol Assoc UK.* 84: 359-365. DOI: <https://doi.org/10.1017/S0025315404009282h>

ROUSE GW, FITZHUGH K. 1994. Broadcasting fables: is external fertilization really primitive? Sex, size, and larvae in sabellid polychaetes. *Zool Scrip.* 23 (4): 271-312. DOI: <https://doi.org/10.1111/j.1463-6409.1994.tb00390.x>

ROUSE GW, PLEIJEL F. 2001. Polychaetes. Oxford: Oxford University Press. 354 p.

RUOKSAKULPIWAT S, PHIANHASIN L, BENJASIRISAN C, DING K, AJIBADE A, KUMAR A, STEWART C. 2024. Assessing the efficacy of ChatGPT versus human researchers in identifying relevant studies on health interventions for improving medication adherence in patients with ischemic stroke when conducting systematic reviews: comparative analysis. *JMIR Mhealth Uhealth.* 12: e51526. DOI: <https://doi.org/10.2196/51526>

RUPPERT RR, BARNES RD. 1996. Zoología de los invertebrados. Mexico: McGraw-Hill. 1114 p.

SABATINI ME, ÁLVAREZ COLOMBO GL. 2001. Seasonal pattern of zooplankton biomass in the Argentinian shelf off Southern Patagonia (45°-55°S). *Sci Mar.* 65 (1): 21-31. DOI: <https://doi.org/10.3989/scimar.2001.65n121>

SÁNCHEZ MA, GIBERTO D, SCHEJTER L, BREMEC C. 2011. The Patagonian scallop fishing grounds in shelf break frontal areas: the non-assessed benthic fraction. *Lat Am J Aquat Res.* 39 (1): 167-171. DOI: <https://doi.org/10.3856/vol39-issue1-fulltext-16>

SCHEJTER L, BREMEC C. 2007. Benthic richness in the Argentine continental shelf: the role of *Zygochlamys patagonica* (Mollusca: Bivalvia: Pectinidae) as settlement substrate. *J Mar Biol Assoc UK.* 87: 917-925. DOI: <https://doi.org/10.1017/S0025315407055853>

SCHEJTER L, BREMEC CS. 2019. Stony corals (Anthozoa: Scleractinia) of Burdwood bank and neighbouring areas, SW Atlantic Ocean. *Sci Mar.* 83: 247-260. DOI: <https://doi.org/10.3989/scimar.04863.10A>

SCHEJTER L, BREMEC CS, AKSELMAN R, HERNÁNDEZ D, SPIVAK ED. 2002. Annual feeding cycle of the Patagonian scallop *Zygochlamys patagonica*. *Mar Ecol Prog Ser.* 237: 251-262. DOI: <https://doi.org/10.3997/0378-1909.00150>

onica (King and Broderip, 1832) in Reclutas bed (39°S-55°W), Argentine Sea. *J Shelf Res.* 21 (2): 553-559.

SCHEJTER L, BREMEC C, CERRANO C, BERTOLINO M, CALCINAI B. 2025. Checklist of sponges (Porifera) at the shelf-break front of Argentina, SW Atlantic Ocean, with data on their settlement substrata. *Europ Zool J.* 92 (1): 535-557. DOI: <https://doi.org/10.1080/24750263.2025.2495787>

SCHEJTER L, BREMEC CS, ESCOLAR M, GIBERTO DA. 2017. Plataforma externa y talud continental. In: BREMEC CS, GIBERTO DA, editors. *Comunidades bentónicas en regiones de interés pesquero de la Argentina*. Mar del Plata: Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP). p. 57-75.

SCHEJTER L, BREMEC C, WALOSZEK D, ESCOLAR M. 2010. Recently settled stages and larval developmental mode of the bivalves *Zygochlamys patagonica* and *Hiatella meridionalis* in the Argentine Sea. *J Shelf Res.* 29 (1): 63-67. DOI: <https://doi.org/10.2983/035.029.0127>

SCHEJTER L, CHIESA IL, DOTI BL, BREMEC C. 2012. *Mycale (Aegogropila) magellanica* (Porifera: Demospongiae) in the southwestern Atlantic Ocean: endobiotic fauna and new distributional information. *Sci Mar.* 76 (4): 753-761. DOI: <https://doi.org/10.3989/scimar.03490.21A>

SCHEJTER L, ESCOLAR M. 2013. Volutid shells as settlement substrates and refuge in soft bottoms of the SW Atlantic Ocean. *Pan Amer J Aquat Sci.* 8 (2): 104-111.

SCHEJTER L, ESCOLAR M, ROTH R, GARCÍA J, CAMPODÓNICO S. 2026. *In situ* imaging of benthic fauna at the Argentine shelf-break front, SW Atlantic Ocean. *Lat Am J Aquat Res.* 54 (1). DOI: <https://doi.org/10.3856/vol54-issue1-full-text-3436>

SCHEJTER L, GAITÁN E, PAVÓN NOVARIN M. 2024. The value of by-catch: can we use commercial species stock assessment cruises for the study of non-target species? The case of sponges. *Biol Life Sci Forum.* 39 (1): 4. DOI: <https://doi.org/10.3390/blsf2024039004>

SCHEJTER L, GENZANO G, PEREZ CD, ACUÑA F, CORDEIRO RTS, SILVA RA, GARESE A, BREMEC CS. 2020. Checklist of benthic Cnidaria in the SW Atlantic Ocean (54°-56°S). *Zootaxa.* 4878: 201-239. DOI: <https://doi.org/10.11646/zootaxa.4878.2.1>

SCHEJTER L, LÓPEZ GAPPÀ J, BREMEC C. 2014. Epibiotic relationships on *Zygochlamys patagonica* (Mollusca, Bivalvia, Pectinidae) increase biodiversity in a submarine canyon in Argentina. *Deep-Sea Res Pt II.* 104: 252-258. DOI: <https://doi.org/10.1016/j.dsr2.2013.10.010>

SCHEJTER L, MANTELATO FL. 2011. Shelter association between the hermit crab *Sympagurus dimorphus* and the zoanthid *Epizoanthus paguricola* in the southwestern Atlantic Ocean. *Acta Zool.* 92: 141-149. DOI: <https://doi.org/10.1111/j.1463-6395.2009.00440.x>

SCHEJTER L, MANTELATO FL. 2015. The hermit crab *Sympagurus dimorphus* (Anomura: Parapaguridae) at the edge of its range in the south-western Atlantic Ocean: population and morphometry features. *J Nat Hist.* 49 (33-34): 2055-2066. DOI: <https://doi.org/10.1080/0022293.2015.1009406>

SCHEJTER L, SCELZO MA, MANTELATO FL. 2017b. Reproductive features of the deep water hermit crab *Sympagurus dimorphus* (Anomura: Parapaguridae) inhabiting pseudoshells in the SW Atlantic Ocean. *J Nat Hist.* 51 (47-48): 2779-2792. DOI: <https://doi.org/10.1080/0022293.2017.1395094>

SCHEJTER L, SCHWARTZ M, BREMEC CS. 2015. Registro del coral de piedra *Desmophyllum dianthus* (Esper, 1794) (Scleractinia, Caryophylliidae) en áreas del frente de talud del Mar Argentino. *Rev Invest Desarr Pesq.* 26: 89-95.

SCHEJTER L, SPIVAK E. 2005. Morphometry, sexual maturity, fecundity and epibiosis of the South American spider crab *Libidoclaea granaria* (Brachyura: Majoidea). *J Mar Biol Assoc UK.* 85 (4): 857-863. DOI: <https://doi.org/10.1017/S0025315405011811>

SCHELEMA RS. 1986. On dispersal and planktonic larvae of benthic invertebrates: an eclectic overview and summary of problems. *Bull Mar Sci.* 39: 290-322.

SCHWARTZ M, CAMPODÓNICO S. 2019. Primera descripción del desarrollo larval temprano de la vieira patagónica (*Zygochlamys patagonica*). *Mar Fish Sci.* 32 (2): 115-124. DOI: <https://doi.org/10.47193/mafis.3222019121903>

SELVAKUMARASWAMY P, BYRNE M. 2000. Reproduction, spawning, and development of 5 ophiuroids from Australia and New Zealand. *Invert Biol.* 119: 394-402. DOI: <https://doi.org/10.1111/1/j.1744-7410.2000.tb00109.x>

SOMMER C. 1990. Post-embryonic larval development and metamorphosis of the hydroid *Eudendrium racemosum* (Cavolini) (Hydrozoa, Cnidaria). *Helgo Meeresunters.* 44: 425-444.

SOUTO VS. 2014. Invertebrados bentónicos en el Mar Argentino: estado actual de conocimiento, riqueza específica y patrones de distribución [PhD thesis]. Mar del Plata: Universidad Nacional de Mar del Plata. <https://hdl.handle.net/1834/6803>

SQUIRES DF. 1962. Deep sea corals collected by the Lamont geological observatory, 3, Larvae of the Argentine coral *Flabellum curvatum* Moseley. *Am Mus Nov.* 2078: 1-11.

STRATHMANN RR. 1978. The evolution and loss of feeding larval stages of marine invertebrates. *Evolution.* 32 (4): 894-90. DOI: <https://doi.org/10.2307/2407502>

STRATHMANN RR. 1985. Feeding and nonfeeding larval development and life-history evolution in marine invertebrates. *Ann Rev Ecol Syst.* 16: 339-361. DOI: <https://doi.org/10.1146/annurev.es.16.110185.002011>

TANABE K. 1990. Early life history of two Middle Pleistocene species of *Limopsis* (Arcoida: Bivalvia). *Trans Proc Palaeontol Soc Japan (New Series).* 160: 631-640.

TAPELLA F, LOVRICH GA, ROMERO MC, THATJE S. 2002. Reproductive biology of the crab *Munida subrugosa* (Decapoda: Anomura: Galatheidae) in the Beagle Channel, Argentina. *J Mar Biol Assoc UK.* 82: 589-595. DOI: <https://doi.org/10.1017/S0025315402005921>

TATIÁN M, LAGGER C. 2009. Ascidiacea. In: HÄUSSERMANN V, FORSTERRA G, editors. *Fauna marina bentónica de la patagonia chilena.* Santiago: Nature in Focus. p. 883-906.

TESO V, PENCHASZADEH PE. 2019. Development of the gastropod *Trochita pileus* (Calyptaeidae) in the sub-Antarctic Southwestern Atlantic. *Polar Biol.* 42: 171-178. DOI: <https://doi.org/10.1007/s00300-018-2412-4>

THORSON G. 1950. Reproductive and larval ecology of marine bottom invertebrates. *Biol Rev.* 25 (1): 1-45. DOI: <https://doi.org/10.1111/j.1469-185X.1950.tb00585.x>

TODD CD. 1998. Larval supply and recruitment of benthic invertebrates: do larvae always disperse as much as we believe? *Hydrobiologia.* 375/376: 1-21. DOI: <https://doi.org/10.1023/A:1017007527490>

TORRES ALBERTO ML, BODNARIK N, SARACENO M, ACHA EM. 2025. Subantarctic front variability: a potential driver of Patagonian scallop *Zygochlamys patagonica* recruitment fluctuations. *Mar Ecol Prog Ser.* 762: 51-63. DOI: <https://doi.org/10.3354/meps>

TORROGLOSA ME, GIMÉNEZ J. 2012. Spawn and reproduction of the gastropod *Trochita pileus* (Lamarck, 1822) from the Southwestern Atlantic Ocean. *Malacología.* 55 (2): 203-208. DOI: <https://doi.org/10.4002/040.055.0202>

TRUCCO MI, LASTA M. 2008. Identificación de marcadores ISSR (Inter Simple Sequence Repeats) en la vieira patagónica, *Zygochlamys patagonica*. *Inf Invest INIDEP* N° 6/2008. 14 p.

VANCE RR. 1973. On reproductive strategies in marine benthic invertebrates. *Amer Naturalist.* 107 (955): 339-352. DOI: <http://www.jstor.org/stable/2459535>

VINUESA JH. 2007. Reproduction of *Munida gregaria* (Decapoda: Galatheidae) in San Jorge gulf, Southwest Atlantic Ocean. *J Crust Biol.* 27 (3): 437-444. DOI: <https://doi.org/10.1651/S-2787.1>

WALLER RG, GOODE S, TRACEY D, JOHNSTONE J, MERCIER A. 2023. A review of current knowledge on reproductive and larval processes of deep-sea corals. *Mar Biol.* 170: 58. DOI: <https://doi.org/10.1007/s00227-023-04182-8>

WALLER RG, TYLER PA, SMITH CR. 2008. Fecundity and embryo development of three Antarctic deep-water scleractinians: *Flabellum thouarsii*, *F. curvatum* and *F. impensum*. *Deep-Sea Res Pt II.* 55: 2527-2534. DOI: <https://doi.org/10.1016/j.dsr2.2008.07.001>

WANGENSTEEN OS, TURON X, PALACÍN C. 2017. Reproductive strategies in marine invertebrates and the structuring of marine animal forest. In: ROSSI S, BRAMANTI L, GORI A, OREJAS C, editors. *Marine animal forests. The ecology of benthic biodiversity hotspots.* Cham: Springer. p. 571-594. DOI: https://doi.org/10.1007/978-3-319-21012-4_52

WILSON WH. 1991. Sexual reproductive modes in Polychaetes: classification and diversity. *Bull Mar Sci.* 48 (2): 500-16.

YUVERO MC, TORROGLOSA ME, GIMÉNEZ J. 2022. Gonadal architecture and fecundity in two populations of *Fissurellidea megatrema* (Vetigastropoda: Fissurellidae). *Zool Anz.* 301: 100-105. DOI: <https://doi.org/10.1016/j.jcz.2022.10.001>

ZELAYA DG, GÜLLER M. 2023. Decrypting the feared genus *Hiatella* (Bivalvia): South American species. *Zool J Linn Soc.* 199 (4): 882-905. DOI: <https://doi.org/10.1093/zoolinnean/zlad064>

APPENDIX

Table A1. Studied taxa.

Phylum Annelida	
Class Polychaeta	<i>Chaetopterus antarcticus</i> Kinberg, 1867 <i>Idanthyrsus macropaleus</i> (Schmarda, 1861) <i>Phyllochaetopterus</i> sp. <i>Polydora</i> sp. <i>Potamilla antarctica</i> (Kinberg, 1866) <i>Serpula narconensis</i> Baird, 1864 Spirorbinae
Phylum Arthropoda	
Class Malacostraca	<i>Acanthoserolis polaris</i> (Richardson, 1911) <i>Acanthoserolis schythei</i> (Lütken, 1858) Antarcturidae <i>Euryopodius latreillii</i> Guérin, 1828 <i>Grimothea gregaria</i> (Fabricius, 1793) <i>Libidoclaea granaria</i> H. Milne Edwards and Lucas, 1842 <i>Pagurus comptus</i> White, 1847 <i>Peltarion spinosulus</i> (White, 1843) <i>Propagurus gaudichaudii</i> (H. Milne Edwards, 1836) Sphaeromatidae <i>Sympagurus dimorphus</i> (Studer, 1883) <i>Balanus laevis</i> Bruguière, 1789 <i>Weltnerium gibberum</i> (Aurivillius, 1898) Pantopoda
Class Thecostraca	
Class Pycnogonida	
Phylum Brachiopoda	
Class Rhynchonellata	<i>Liothyrella uva</i> (Broderip, 1833) <i>Magellania venosa</i> (Dixon, 1789) <i>Terebratella dorsata</i> (Gmelin, 1791)
Phylum Bryozoa	
Class Gymnolaemata	<i>Osthmosia eatonensis</i> (Busk, 1881) <i>Alcyonidium australe</i> d'Hondt and Moyano, 1979 <i>Andreella uncifera</i> <i>Arachnopusia monoceros</i> (Busk, 1854) <i>Neothoa</i> cf. <i>chiloensis</i> <i>Smittina leptodentata</i> Hayward and Thorpe, 1990

Table A1. Continued.

	<i>Tubulipora</i> sp.
Phylum Chordata	
Class Ascidiacea	<i>Alloeocarpa incrassata</i> (Herdman, 1886) <i>Cnemidocarpa nordenskjoldi</i> (Michaelsen, 1898) <i>Didemnum</i> sp. <i>Paramolgula gregaria</i> (Lesson, 1830) <i>Sycozoa sigillinoides</i> Lesson, 1830
Phylum Cnidaria	
Class Hexacorallia	<i>Actinostola crassicornis</i> (Hertwig, 1882) <i>Antholoba achates</i> (Drayton in Dana, 1846) <i>Desmophyllum dianthus</i> (Esper, 1794) <i>Epizoanthus paguricola</i> Roule, 1900 <i>Flabellum</i> (<i>Flabellum</i>) <i>curvatum</i> Moseley, 1880 <i>Flabellum</i> (<i>Flabellum</i>) <i>thouarsii</i> Milne Edwards and Haime, 1848 <i>Isotealia antarctica</i> Carlgren, 1899
Class Hydrozoa	<i>Eudendrium ramosum</i> (Linnaeus, 1758) <i>Haleciump beanii</i> (Johnston, 1838) <i>Grammaria abietina</i> (Sars, 1851) <i>Filellum serratum</i> (Clarke, 1879) <i>Lafoea dumosa</i> (Fleming, 1820) <i>Phialella chilensis</i> (Hartlaub, 1905) <i>Synthecium protectum</i> Jäderholm, 1903 <i>Sertularella mediterranea</i> Hartlaub, 1901 <i>Sertularella patagonica</i> (D'Orbigny, 1846) <i>Symplectoscyphus subdichotomus</i> (Kirchenpauer, 1884) <i>Symplectoscyphus</i> sp. <i>Alcyonium antarcticum</i> Wright and Studer, 1889 <i>Convexella magelhaenica</i> (Studer, 1879)
Class Octocorallia	
Phylum Echinodermata	
Class Asteroidea	<i>Diplasterias brandti</i> (Bell, 1881) <i>Acodontaster elongatus</i> (Sladen, 1889) <i>Anasterias antarctica</i> (Lütken, 1857) <i>Ctenodiscus australis</i> Loven in Lütken, 1871 <i>Diploptaster clarki</i> Bernasconi, 1937 <i>Glabraster antarctica</i> (E. A. Smith, 1876) <i>Henricia obesa</i> (Perrier, 1891) <i>Labidiaster radiosus</i> Loven in Lütken, 1871

Table A1. Continued.

Class Crinoidea	<i>Odontaster penicillatus</i> (Philippi, 1870)
	<i>Pteraster affinis lebruni</i> Perrier, 1891
Class Echinoidea	<i>Isometra vivipara</i> Mortensen, 1917
	<i>Arbacia dufresnii</i> (Blainville, 1825)
	<i>Astrocidaris canaliculata</i> (A. Agassiz, 1863)
	<i>Pseudechinus magellanicus</i> (Philippi, 1857)
	<i>Sterechinus agassizii</i> Mortensen, 1910
	<i>Trypilaster philippii</i> (Gray 1851)
Class Holothuroidea	<i>Pentactella leonina</i> (Semper, 1867)
	<i>Psolus patagonicus</i> Ekman, 1925
Class Ophiuroidea	<i>Gorgonocephalus chilensis</i> (Philippi, 1858)
	<i>Ophiactis asperula</i> (Philippi, 1858)
	<i>Ophiomyxa vivipara</i> Studer, 1876
	<i>Ophiosabine vivipara</i> (Ljungman, 1871)
	<i>Ophiuroglypha lymani</i> (Ljungman, 1871)
Phylum Mollusca	
Class Bivalvia	<i>Hiatella umbonata</i> Zelaya and Güller, 2023
	<i>Entodesma</i> sp.
	<i>Limea pygmaea</i> (R. A. Philippi, 1845)
	<i>Limopsis hirtella</i> Mabille and Rochebrune, 1889
	<i>Zygochlamys patagonica</i> (P. P. King, 1832)
Class Gastropoda	<i>Adelomelon ancilla</i> ([Lightfoot], 1786)
	<i>Admete magellanica</i> (Strebel, 1905)
	<i>Calliostoma</i> sp.
	<i>Capulus compressus</i> Smith, 1891
	<i>Cirsotrema magellanicum</i> (R. A. Philippi, 1845)
	<i>Coronium acanthodes</i> (R. B. Watson, 1882)
	<i>Doris fontainii</i> A. d'Orbigny, 1836
	<i>Falsimargarita iris</i> (E. A. Smith, 1915)
	<i>Fissurellidea megatrema</i> A. d'Orbigny, 1839
	<i>Fuegotrophon pallidus</i> (Broderip, 1833)
	<i>Fusitriton magellanicus</i> (Röding, 1798)
	<i>Lamellaria</i> sp.
	<i>Marionia cucullata</i> (Couthouy, 1852)
	<i>Odontocymbiola magellanica</i> (Gmelin, 1791)
	<i>Paraeuthria</i> sp.
	<i>Photinula coerulescens</i> (P. P. King, 1832)
	<i>Trochita pileus</i> (Lamarck, 1822)
	<i>Trophon ohlini</i> Strebel, 1904

Table A1. Continued.

<i>Volvarina warrenii</i> (Marrat, 1876)	
Phylum Porifera	
Class Calcarea	<i>Sycon</i> sp.
Class Demospongiae	<i>Callyspongia (Callyspongia) nuda</i> (Ridley, 1884) <i>Calyx kerguelensis</i> (Hentschel, 1914) <i>Clathria (Clathria) discreta</i> (Thiele 1905) <i>Clathria (Clathria) microxa</i> Desqueyroux 1972 <i>Clathria (Microciona) antarctica</i> (Topsent, 1916) <i>Dasychalina validissima</i> (Thiele, 1905) <i>Haliclona bilamellata</i> Burton, 1932 <i>Hymedesmia (Hymedesmia) antarctica</i> Hentschel 1914 <i>Hymedesmia (Hymedesmia) leptochela</i> Hentschel, 1914 <i>Iophon proximum</i> (Ridley, 1881) <i>Isodictya setifera</i> (Topsent, 1901) <i>Isodictya verrucosa</i> (Topsent, 1913) <i>Mycale (Aegogropila) magellanica</i> (Ridley, 1881) <i>Mycale (Mycale) doellojuradoi</i> Burton, 1940 <i>Myxilla (Myxilla) mollis</i> Ridley and Dendy, 1886 <i>Pseudosuberites</i> sp. <i>Spongia (Spongia) magellanica</i> Thiele, 1905 <i>Stelodoryx argentinae</i> Bertolino <i>et al.</i> 2007 <i>Tedania (Tedaniopsis) charcoti</i> Topsent, 1907 <i>Tedania (Tedaniopsis) massa</i> Ridley and Dendy, 1886 <i>Tedania (Tedaniopsis) mucosa</i> Thiele, 1905 <i>Tedania (Tedaniopsis) sarai</i> Bertolino, Schejter, Calcinaí, Cerrano and Bremec, 2007
