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ABSTRACT. Due to the scarcity of data cited in the literature, digestive enzyme profiles of fish
species from the southwestern Atlantic Ocean are of particular interest. In the present study, the viscera
yield and digestive enzymes (acid and alkaline proteinase, lipase and amylase) of the stripped weakfish
Cynoscion guatucupa, Brazilian codling Urophycis brasiliensis, Patagonian flounder Paralichthys
patagonicus, southern eagle ray Myliobatis goodei and smallnose fanskate Sympterygia bonapartii
were determined. All species exhibited high proteolytic activity (acid: 0.44-11.0 UE mg protein’!
and alkaline: 0.11-2.32 UE mg protein™!) as well as moderate lipase (0.07-0.76 UE mg protein™!) and
amylase activity (0.03-0.24 UE mg protein!). Teleost fish exhibited higher enzyme activities than
cartilaginous fish, with U. brasiliensis exhibiting the highest activities (proteinases, amylases, and
lipases). High-activity enzymes from cold-temperate-adapted organisms, mainly from U. brasilien-
sis and C. guatucupa, may be the source of marine biotechnological bioactive compounds that are
beneficial for biotechnological processes.

Key words: Digestive enzymes, marine fish, Argentine Sea.

Evaluacién comparativa de las actividades de las enzimas digestivas de cinco especies de peces
del Océano Atlantico Sudoccidental

RESUMEN. Debido a la escasez de datos citados en la literatura, los perfiles de enzimas digestivas
de especies de peces del Océano Atlantico Sudoccidental son de particular interés. En el presente
estudio, se determin6 el rendimiento por viscera y las enzimas digestivas (peptidasa acida y alcalina,
lipasa y amilasa) de la pescadilla de red Cynoscion guatucupa, la brotola Urophycis brasiliensis, el
lenguado patagénico Paralichthys patagonicus, el chucho Myliobatis goodei y la raya marmorada
Sympterygia bonapartii. Todas las especies exhibieron alta actividad proteolitica (acida: 0,44-11,0
UE mg proteina™! y alcalina: 0,11-2,32 UE mg proteina’'), asi como moderada actividad de lipasa
(0,07-0,76 UE mg proteina™!) y amilasa (0,03-0,24 UE mg proteina™'). Los peces teledsteos exhibieron
actividades enzimaticas mas altas que los peces cartilaginosos, siendo U. brasiliensis el que presento
las actividades mas altas (proteinasas, amilasas y lipasas). Las enzimas de alta actividad de organismos
adaptados a climas frios, principalmente de U. brasiliensis y C. guatucupa, podrian ser la fuente
de compuestos bioactivos biotecnologicos marinos beneficiosos para los procesos biotecnologicos.

Palabras clave: Enzimas digestivas, peces marinos, Mar Argentino.
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INTRODUCTION

Argentina’s maritime territory extends over
4,000 km of coastline on the southwestern At-
lantic. Demersal fish assemblages in the northern
Argentine continental shelf (34° S-41° S), which
corresponds to Buenos Aires Province coast, are
extremely diverse (FAO 2011). They are distrib-
uted along the continental shelf, which exhibits
latitudinal fluctuations in salinity and temperature
(Piola et al. 2000). Their habitats vary from de-
mersal to benthic, with depths ranging from 60 to
150 m. Eating habits also vary as they consume
different proportions of fish, crustaceans and mol-
lusks (Acuia Plavan and Verocai 2001; Molina and
Cazorla 2015).

In the present study, we investigated three bony
fish belonging to the Class Actinopterygii and two
cartilaginous fish belonging to the Class Elasmo-
branchii. The selected Actinopterygians belong to
three taxonomic orders (Perciformes, Gadiformes
and Pleuronectiformes) while the two selected
Elasmobranchians belong to two distinct taxo-
nomic orders (Rajiformes and Myliobatiformes).
The chosen species are representive of different
taxa and are part of the fish diversity found in
demersal communities from the southwestern
Atlantic coasts. Furthermore, the studied species
are subjected to industrial exploitation by marine
fisheries. They are all captured and landed in great
quantities and they all have commercial value
(SSPyA 2024). These species are often caught
unintentionally as bycatch and discarded before
landing (Bovcon et al. 2013). Additionally, inland
fish processing generates a considerable amount of
waste. Instead of being discarded, digestive organs
could be utilized for enzyme extraction, providing
a wide array of enzymes with unique properties.
This would reduce pollution and the environmental
impact of fishing while also providing sources of
marine bioactive compounds for biotechnological
applications.

The digestion processes in fish is similar to those
of other vertebrates. Proteinases, amylases, and
lipases catalyze the hydrolysis of macronutrients,
breaking down the ingested material into small-
er size molecules (Karasov and Douglas 2013).
Acid proteinases are found in the gastric chamber,
whereas pancreatic proteinases, which act at higher
pH levels, are present in the intestinal lumen. These
enzymes play a key role in fish metabolism since
aminoacid intake and assimilation are crucial for
fish growth and overall metabolism. Pancreatic li-
pases, which depend on bile salts for the digestion
of insoluble substrates, are the main lipid digestive
enzyme in several fish species (Farrel 2011). Car-
bohydrate digestion proceeds at a very low rate
in carnivorous fish, as they are not nutritionally
important for their requirements and metabolism
(Jiao et al. 2023; Yu et al. 2024). Omnivorous and
herbivorous fish can vary their intestinal enzymatic
activity in order to generate higher activities when
more carbohydrates are ingested (Farrel 2011).
Moreover, the five species studied in this work in-
habit cold temperate waters below 20 °C (Piola et
al. 2000). Enzymes from cold temperate-adapted
ectothermic organisms could have great potential
for use in the industry due to their high activity at
low temperatures.

The nature of digestive enzymes varies depend-
ing on the habitat and climate in which fish live.
Temperature adaptation of these enzymes involves
differences in structure, substrate affinity, and ac-
tivation energy, as well as changes in secretion
rates and the production of isozymes-enzymes
that catalyze the same reaction but with optimal
efficiencies at different temperatures (Volkoff and
Rennestad 2020). Effects of water temperature
on fish digestive enzyme activities appear to be
species-specific, as the optimal temperature for
enzyme activity generally falls within the ther-
mal range of the species’ natural habitat. Reports
on enzymes from cold-adapted organisms have
shown that adaptive strategies for functioning at
low temperatures vary among enzymes. Analyses
of structural features important for stability (e.g.
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intra-molecular hydrogen bonds and ion pairs;
proline, methionine, glycine, or arginine content;
surface hydrophilicity; helix stability; and core
packing) indicate that each cold-adapted enzyme
or enzyme system employs a distinct combination
of structural adjustments to increase molecular
flexibility, thereby enhancing catalytic efficiency
(Arne et al. 2000).

The aim of this study was to determine protein-
ase (acid and alkaline), lipase and amylase activi-
ties, as well as viscera yield in the striped weakfish
Cynoscion guatucupa (Cg) (Cuvier, 1830), Bra-
zilian codling Urophycis brasiliensis (Ub) (Kaup,
1858), Patagonian flounder Paralichthys patagoni-
cus (Pp) (Jordan, 1889), smallnose fanskate Sympt-
erigia bonapartii (Sb) (Miiller and Henle, 1841),
and southern eagle ray Myliobatis goodei (Mg)
(Springer, 1939).

MATERIALS AND METHODS

Biological samples

Fishes were obtained during the Maritime
Littoral Campaign (March-2018, Mar del Plata,
Argentina), carried out by the Instituto de Inves-
tigaciones Marinas y Costeras (IIMyC) (Project

PUE-CONICET) (Table 1). The fish were dis-
sected ventrally. Viscera were removed and their
contents emptied. Stomachs, intestines and py-
loric caeca were used for subsequent tests. Each
sample (stomach or intestine with pyloric caeca)
was individually homogenized in chilled distilled
water (1:3 w v'"). The soluble protein fraction was
obtained by centrifugation (Presvac EPF-12R, Ar-
gentina) for 30 min at 4 °C and 10,000 g. Super-
natants were separated as extracts for all enzymat-
ic assays. Enzymatic extracts from the intestine
were frozen at -20 °C. Extracts from stomachs
were maintained overnight at 4 °C to activate the
pepsinogen and then stored at -20 °C until use
(Friedman et al. 2020).

Biochemical analysis

Soluble protein in crude extracts of stomach and
intestine (mg protein ml-!' extract) was measured
according to Bradford (1976), using bovine serum
albumin (Sigma A9647) as standard. Acid protein-
ase activity was determined in stomach simples
whereas alkaline proteinase, lipase and amylase
activities were evaluated in intestine samples. Acid
proteinase activity was determined at pH 2.0 in a
substrate solution containing 0.5% (w v'') bovine
haemoglobin (Sigma H2625) in 200 mM Gly-
cine-HCI Buffer according to Anson (1938). Al-

Table 1. Scientific name, abbreviation, taxonomic classification, number of samples used and distribution areas of studied fishes

from the southwestern Atlantic Ocean.

Species Abbreviation Class, order, family Samples Distribution area
Cynoscion guatucupa Cg Actinopterygii, Perciformes, 9 22°8-43° S
Sciaenidae (Caille et al. 1997)
Urophycis brasiliensis Ub Actinopterygii, Gadiformes, 6 23°S-40° S
Phycidae (Cousseau 1993)
Paralichthys patagonicus Pp Actinopterygii, Pleuronectiformes, 4 23°S-43° S
Paralichthyidae (Diaz de Astarloa 1994)
Sympterigia bonapartii Sb Elasmobranchii, Rajiformes, 10 23°S-54° S (Menni
Arhynchobatidae and Stehmann 2000)
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kaline proteinase activity was determined using
0.5% (w v'!) azocasein (Sigma A2765) in 50 mM
Tris-HCI Buffer, pH 7.5, according to Garcia-Car-
refo (1992). Absorbance was recorded at 280 nm
and 366 nm, respectively.

Lipase enzymatic activity was measured at pH
8.0 using the method described by Versaw et al.
(1989) and its modification by Nolasco-Soria et al.
(2018), using 20mM B-naphthyl caprylate as sub-
strate. Activity was determined by measuring the
release of B-naphthyl in a microplate spectropho-
tometer at 540 nm. Amylase activity was measured
following Bernfeld (1955), as the rate of production
of glucose from starch (1% w v'!) as substrate at pH
7.5. The glucose produced during the incubation
was measured by the DNS (Dinitrosalicylic Acid)
method (Vega-Villasante et al. 1993).

All assays were performed in triplicate at room
temperature. Specific enzymatic activities were
expressed as units of activity per mg protein (UE
mg protein!). Total enzymatic activities were
expressed as units of activity per ml enzymatic
extract (UE ml enzymatic extract!'). The viscera
yield (Y) was calculated as units of activity per g
of tissue (UE gr tissue™!). One unit of activity cor-
responds to the change in absorbance per minute
(UE = AAbs min™!).

Statistical analysis

Results were presented as means plus minus
(£) standard error of the mean (SEM). Enzymatic
activities among species were compared through
Generalized Linear Mixed Models. Models were
constructed using the function Ime from the nmle
package (Pinheiro et al. 2017) and they were vali-
dated using ANOVA. Differences between species
for a specific activity assay were contrasted using
Tukey. All statistical analyses were conducted in
R 2.13.0.

RESULTS

The highest acid and alkaline proteinase specif-
ic activity was observed in Urophycis brasiliensis
(11.0 £ 1.75 and 2.32 + 0.41 UE mg protein’!, re-
spectively), which were statistically different from
those of the other species (Table 2). Similarly, the
highest specific lipase and amylase activities were
observed for Ub (0.76 £ 0.11 and 0.24 £ 0.02 UE
mg protein!, respectively). Lipase activity showed
a trend of being more than 50% higher in U. bra-
siliensis compared to the other species (Table 3).

Table 2. Total and specific activity of acid and of alkaline proteinase of Urophycis brasiliensis (Ub), Cynoscion guatucupa (Cg),
Paralichthys patagonicus (Pp), Sympterigia bonapartii (Sb) and Myliobatis goodei (Mg).

Acid proteinase Alkaline proteinase
Species TA SA TA SA
Cg 2.34+0.312 3.21+£0.382 0.7+£0.10* 0.98 £0.10*
Ub 2.69 £ 0.36% 11.0 £ 1.75° 0.87 £0.11° 2.32+041°
Pp 1.93 £0.11° 2.51 £0.17% 0.64 £ 0.172% 0.94 £0.26*
Sb 1.03 £0.14¢ 0.44 £ 0.07° 0.35 £ 0.06% 0.14 £0.22°
Mg 1.67 +0.17° 0.76 £ 0.20¢ 0.71 +£0.18® 0.11 £0.03¢

Total proteinase activity (TA) and specific proteinase activity (SA) was expressed as UE mL! and UE mg protein™!, respectively.

Data are indicated as means (1) standard error of the mean (SEM). Different letters in the same column, indicate significant

differences among species.
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Viscera yield values varied significantly among
species, but at the same other enzymatic results.
Urophycis brasiliensis showed the highest yield
values for all tested enzymes (Table 4). Regarding
enzyme activity values and yield per viscera, C.
guatucupa ranked second in importance, where-
as P patagonicus, although showing a tendency
to occupy third place, this was not supported by
statistical results, which could reflect the limited
number of samples.

DISCUSSION

The five fish species analyzed here showed con-
siderable activity differences between them. En-
zyme activity values were in general substantially
lower for cartilaginous than in teleostean fish. The
different enzymatic activities can be related to the
phylogenetic groups to which the fish belong (Chan
et al. 2004; Chaudhuri et al. 2012). Variations in

Table 3. Total and specific lipase and amylase activity of Urophycis brasiliensis (Ub), Cynoscion guatucupa (Cg), Paralichthys
patagonicus (Pp), Sympterigia bonapartii (Sb) and Myliobatis goodei (Mg).

Lipase Amylase
Species TA SA TA SA
Cg 0.18 £0.022 0.38 £0.072 0.08 £0.012 0.12£0.012
Ub 0.29 +0.02% 0.76 £ 0.11° 0.24 +£0.01° 0.24 +0.02°
Pp 0.17+0.012 0.21 £ 0.032 0.05 £ 0.012 0.05£0.01%
Sb 0.12 £ 0.022 0.07 £ 0.012 0.09 + 0.022 0.03£0.01°
Mg 1.24 +£0.31° 0.12+£0.032 0.03 £ 0.012 0.12 £0.032

Total enzyme activity (TA) and specific enzyme activity (SA) was expressed as UE mL™! and UE mg protein!, respectively. Data
are indicated as means (+) standard error of the mean (SEM). Different letters in the same column, indicate significant differences

among species.

Table 4. Viscera yield of acid and alkaline proteinase, lipase and amylase of Urophycis brasiliensis (Ub), Cynoscion guatucupa
(Cg), Paralichthys patagonicus (Pp), Sympterigia bonapartii (Sb) and Myliobatis goodei (Mg).

Proteinase
Species Acid Alkaline Lipase Amylase
Cg 2.08 +0.45° 0.67 £ 0.08 0.23 £ 0.04° 0.08 £0.01°
Ub 827 +1.37° 1.80 +0.30° 0.80 +0.17° 0.21 +0.02°
Pp 1.17 £ 0.09? 0.47+0.132 0.11£0.012 0.03 +0.00%°
Sb 0.22 £0.04* 0.06 £0.01* 0.03 £0.02? 0.02 £ 0.00°
Mg 0.37 £0.08* 0.05 £0.02* 0.06 £0.01? 0.06 £0.01%*

Viscera yield (Y) was expressed as U gr'! tissue. Data are indicated as means (+) standard error of the mean (SEM). Different letters

in the same column, indicate significant differences among species.
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values obtained could also be related to the species’
feeding habits. Their digestive organs, particularly
the intestine, reflect fish feeding habits. Fish diges-
tive enzyme activities are closely related to the diet
and the fish ability to digest and absorb different
nutrients (Liu et al. 2021). Previous studies found
that herbivorous fish such as Roho labeo (Labeo
rohita) and Japanese eel (Anguilla japonica) have
stronger amylase activity than carnivorous fish
such as great white catfish (Wallago attu) (Agrawal
et al. 1975) and rainbow trout (Oncorhynchus my-
kiss) (Hidalgo et al. 1999). In the present work, all
fish species showed elevated proteinase activities.
These elevated values could be associated with their
carnivorous diet (Jiao et al. 2023; Yu et al. 2024).
Urophycis brasiliensis had the highest values for
both enzyme activities (total and specific activity)
and viscera yield, with C. guatucupa coming in
second. Regarding feeding habits, U. brasiliensis
preys on crustacean, fish, mollusks, and annelids,
displaying opportunistic behavior (Acufia Plavan
et al. 2007). Cynoscion guatucupa feeds mainly on
crustacean, but as ontogeny progresses, individuals
begin to consume fish (Sardifia and Lopez Cazorla
2005). On the other hand, P. patagonicus also preys
mostly on pelagic fish (Troccoli et al. 2021). The
skate S. bonapartii preys on various fish species
(Castello et al. 1997), while M. goodei shows a uni-
form diet, feeding mainly on bivalves (Molina and
Cazorla 2015). Differences in predatory behaviors
and dietary items could explain distinct enzymat-
ic activities. Generalist and opportunistic feeding
behavior, along with a wide range of habitats, could
be associated with high enzyme activity.
Friedman and Fernandez-Gimenez (2024) re-
cently conducted a systematic review of the state of
knowledge regarding marine fish digestive enzymes
at a global level. In this sense, the authors report-
ed limited studies addressing species distributed
exclusively in the southwest Atlantic Ocean, such
as whitemouth croaker (Micropogonias furnieri),
Parona leatherjacket (Parona signata) and Brazilian
flounder (Paralichthys orbignyanus). In the case of
the Brazilian flounder, the present study determined

the enzymatic activity of intestinal proteinases using
azocasein as a substrate under alkaline conditions.
This study made no distinction between alkaline
peptidases classes, nor did it evaluate their optimal
biochemical conditions. However, Candiotto et al.
(2018) reported the presence of trypsin, chymot-
rypsin, and aminopeptidases in the intestine using
specific substrates and inhibitors, and observed op-
timal pH values of 9.5, 9.0, and 8.0, respectively,
with an optimal temperature of 50 °C. Additionally,
Friedman et al. (2022, 2023, 2024) stated that the
most studied digestive enzymes in fishes are alkaline
proteinases, with a general lack of information on
other hydrolytic enzymes, making this an area of
research vacancy. The same authors studied alkaline
proteinases of several species from the Argentine
Sea, including Argentine hake (Merluccius hubbsi),
Brazilian flathead (Percophis brasiliensis), U. bra-
siliensis, and C. guatucupa. In this regard, Friedman
et al. (2022) reported that stomach proteinases of U.
brasiliensis and C. guatucupa exhibited the highest
stability at pH range of 2.0-4.0. Alkaline proteinas-
es of both species were highly stable between pH
7.0 and 11.5. Optimal temperatures were 30 °C and
50 °C, with stability at 10 °C and 30 °C for 150
min. The optimal temperature of intestinal enzymes
was 50 °C, with high stability at 10 °C and 30 °C
for 150 min. Furthermore, Friedman et al. (2023)
conducted a kinetic characterization of crude ex-
tracts of alkaline proteinases from the intestine and
pyloric caeca of U. brasiliensis and C. guatucupa,
demostrating that maximum A440 values were de-
pendent on both the species analyzed and the initial
concentration of azocasein. Finally, Friedman et al.
(2024) observed that the aspartic proteinase activity
of these species was stable in the presence of Mn?*,
K*, and Ca?*, and that the surfactant Tween 20 in-
creased enzyme activity in all cases, whereas Tween
80 had a positive effect only on proteinases from
U. brasiliensis. Enzymes from both species were
stable in the presence of hydrogen peroxide, and
notably, the aspartic proteinases of C. guatucupa
were compatible with the tested commercial deter-
gents. While studies by Friedman et al. (2022, 2023,
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2024) focused on advancing technological knowl-
edge of proteinases, the present work emphasizes a
comparative analysis of different enzymes, acid and
alkaline proteinases, amylases, and lipases, from five
fish species of the southwest Atlantic Ocean.

Proteinase, amylase and lipase activities of a
few other sciaenids (C. othonopterus, C. parvi-
pinnis and C. xanthulus) have been reported
(Gonzalez-Félix et al. 2020). Regarding flatfishes,
various enzyme measurements have been carried
out in the genus Paralychtys spp., mainly P. oliva-
ceus, in which different types of proteinases, carbo-
hydrates degrading enzymes and lipases have been
detected (Tian et al. 2002; Candiotto et al. 2018).
Enzymes have also been detected in P. orbignyanus
(del Valle et al. 2016) and P. californicus (Zacari-
as-Soto et al. 2006). Studies on members of the
family Phycidae, particularly Urophycis sp., as well
as on two chondrichthyan species, Myliobatis spp.
and Sympterygia spp., are scarce. In this context,
Lamas and Massa (2023) extracted and purified en-
zymes from the gastrointestinal tract of M. goodei
using low-cost processes. Peptidases and lipases
were characterized, demonstrating that purified en-
zymes were stable in the presence of commercial
detergents, and that contributed positively to the
removal of protein materials.

Enzymes are used in a wide range of bioprocess-
es (Fernandez-Gimenez 2019) as those occurring
in detergent, leather, food, agrochemical, pharma-
ceutical, chemical and waste treatment industries
(Bougatef 2013; Homaei et al. 2016). Enzymatic
extracts from marine organisms have been previ-
ously assessed for different biotechnological appli-
cations, demonstrating promising results as an ac-
tive agent in antifouling paints (Lenchours Pezzano
et al. 2024), in the production of hydrolysates with
high nutritional content (Pereira et al. 2022), and
as additives in aquaculture (Rodriguez et al. 2019,
2024; del Valle et al. 2022) and cheese making
(Pereira and Fernandez-Gimenez 2017). Thus, ma-
rine fish from cold temperate water, primarily from
U. brasiliensis, followed by C. guatucupa, could be
a source of compounds with unknown properties

and novel biotechnological applications. Addition-
al assays are required for the study of enzymes
measured in these preliminary determinations.
Stability in pH and temperature assays carried out
with these enzymes would be of special interest for
further studies, especially in the case of proteinases
with high activities. Furthermore, determination of
enzyme activity with different concentrations of
industrial compounds, such as salts or detergents,
would provide new useful information about their
potential applications.
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