Seasonal primary production at the EPEA station, southwestern Atlantic: relationships with phytoplankton composition and environmental properties

Authors

  • Valeria Segura Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo Nº 1, Escollera Norte, B7602HSA - Mar Del Plata, Argentina https://orcid.org/0000-0002-0802-8070
  • Daniela Del Valle Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo Nº 1, Escollera Norte, B7602HSA - Mar Del Plata, Argentina - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina https://orcid.org/0009-0005-4137-9285
  • Vivian A. Lutz Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo Nº 1, Escollera Norte, B7602HSA - Mar Del Plata, Argentina - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina https://orcid.org/0000-0003-0951-2654
  • Moira Luz Clara Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo Nº 1, Escollera Norte, B7602HSA - Mar Del Plata, Argentina - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina https://orcid.org/0000-0002-7539-5292
  • Ricardo I. Silva Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo Nº 1, Escollera Norte, B7602HSA - Mar Del Plata, Argentina
  • Jorge Fernández Acuña Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo Nº 1, Escollera Norte, B7602HSA - Mar Del Plata, Argentina https://orcid.org/0009-0002-7588-3154
  • M. Guillermina Ruiz Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo Nº 1, Escollera Norte, B7602HSA - Mar Del Plata, Argentina https://orcid.org/0000-0003-0242-4846
  • Lucrecia Allega Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo Nº 1, Escollera Norte, B7602HSA - Mar Del Plata, Argentina https://orcid.org/0000-0002-7580-392X
  • Carla F. Berghoff Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo Nº 1, Escollera Norte, B7602HSA - Mar Del Plata, Argentina
  • Guillermina García Facal Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo Nº 1, Escollera Norte, B7602HSA - Mar Del Plata, Argentina
  • Lucia Epherra Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo Nº 1, Escollera Norte, B7602HSA - Mar Del Plata, Argentina - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina

DOI:

https://doi.org/10.47193/mafis.3912026010104

Keywords:

Photosynthesis, physiological parameters, bio-optical properties, phytoplankton taxonomy, Marine Ecological Time Series

Abstract

This study presents the first estimates of primary production (PP) from the Marine Ecological Time Series, Estación Permanente de Estudios Ambientales (EPEA) in the Argentine Sea and examines its relationship with phytoplankton community composition and environmental factors using data obtained between 2006 and 2019. Our findings indicate that PP at EPEA exhibits seasonal pulses, with an estimated annual average of 202 ± 115 g C m-2 yr-1, classifying the system as mesotrophic. The peak of PP occurred in spring associated with increased irradiance and water column stratification, and the dominance of diatoms, dinoflagellates, and haptophytes. Winter was the least productive season, characterized by low light levels and a deep mixed layer, with a prevalence of cryptophytes and ultraphytoplankton. In summer, PP was lower than in spring, and the community was dominated by picoplanktonic Synechococcus spp., adapted to low nutrients and high light. In autumn, PP increased relative to summer, associated with higher microphytoplankton biomass. A key finding was the decoupling between PP and total carbon biomass, highlighted by the high variability of the BC to ChlaS (BC/ChlaS) ratio. This ratio is crucial for linking carbon-based biogeochemical models with satellite-based PP models. Deviations from the expected seasonal patterns could point to the sensitivity of coastal PP to large-scale climate influences, such as the Southern Annular Mode (SAM) and the El Niño-Southern Oscillation (ENSO). Our results evidence the physiological adaptability of phytoplankton in this dynamic coastal environment and highlight the necessity of high-frequency sampling to improve primary productivity models in this under-sampled region.

Downloads

Download data is not yet available.

References

Armstrong FAJ, Stearns CA, Strickland JDH. 1967. The measurement of upwelling and subsequent biological processes by means of the Technicon Autoanalyzer and associated equipment. Deep Sea Res. 14: 381-389. DOI: https://doi.org/10.1016/0011-7471(67)90082-4

Azam F, Malfatti F. 2007. Microbial structuring of marine ecosystems. Nat Rev Microbiol. 5 (10): 782-791. DOI: https://doi.org/10.1038/nrmicro1747

Baldoni A, Molinari G, Guerrero RA, Kruk M. 2008. Base regional de datos oceanográficos (BaRDO) INIDEP. Inf Invest INIDEP Nº 13/2008. 25 p.

Balech E. 1988. Los dinoflagelados del Atlántico Sudoccidental. Publicaciones Especiales. Instituto Español de Oceanografía. 1. 310 p.

Behrenfeld MJ, Boss ES. 2014. Resurrecting the ecological underpinnings of ocean plankton blooms. Ann Rev Mar Sci. 6 (1): 167-194. DOI: https://doi.org/10.1146/annurev-marine-052913-021325

Behrenfeld MJ, Boss ES. 2018. Student’s tutorial on bloom hypotheses in the context of phytoplankton annual cycles. Glob Chang Biol. 24 (1): 55-77. DOI: https://doi.org/10.1111/gcb.13858

Behrenfeld MJ, Hu Y, Hostetler CA, Dall’Olmo G, Rodier SD, Hair JW, Trepte CR. 2013. Space-based lidar measurements of global ocean carbon stocks. Geophys Res Lett. 40 (16): 4355-4360. DOI: https://doi.org/10.1002/grl.50816

Booth BC. 1993. Estimating cell concentration and biomass of autotrophic plankton using microscopy. In: Kemp PF, Sherr BF, Sherr EB, Cole JJ, editors. Handbook of methods in aquatic microbial ecology. Boca Raton: Lewis Publishers. p. 199-205. DOI: https://doi.org/10.1201/9780203752746-25

Bouman H, Platt T, Sathyendranath S, Stuart V. 2005. Dependence of light-saturated photosynthesis on temperature and community structure. Deep Sea Res 1 Oceanogr Res Pap. 52 (7): 1284-1299. DOI: https://doi.org/10.1016/j.dsr.2005.01.008

Bouman HA, Platt T, Doblin M, Figueiras FG, Gudmundsson K, Gudfinnsson HG, Huang B, Hickman A, Hiscock M, Jackson T. 2018. Photosynthesis-irradiance parameters of marine phytoplankton: Synthesis of a global data set. Earth Syst Sci Data. 10 (1): 251-266. DOI: https://doi.org/10.5194/essd-10-251-2018

Buesseler KO. 1998. The decoupling of production and particulate export in the surface ocean. Global Biogeochem Cycles. 12 (2): 297-310. DOI: https://doi.org/10.1029/97GB03366

Buratti CC, Chidichimo MP, Cortés F, Gaviola S, Martos P, Prosdocimi L, Seitune D, Verón E. 2022. Estado del conocimiento de los efectos del cambio climático en el Océano Atlántico Sudoccidental sobre los recursos pesqueros y sus implicancias para el manejo sostenible. Buenos Aires: Ministerio de Agricultura, Ganadería y Pesca. 225 p.

Calbet A, Landry MR. 2004. Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol Oceanogr. 49 (1): 51-57. DOI: https://doi.org/10.4319/lo.2004.49.1.0051

Carranza MM, Gille ST, Franks PJ, Johnson KS, Pinkel R, Girton JB. 2018. When mixed layers are not mixed. Storm‐driven mixing and bio‐optical vertical gradients in mixed layers of the Southern Ocean. J Geophys Res Oceans. 123 (10): 7264-7289. DOI: https://doi.org/10.1029/2018JC014416

Carreto JI, Lutz VA, Carignan MO, Colleoni ADC, De Marco SG. 1995. Hydrography and chlorophyll a in a transect from the coast to the shelf-break in the Argentinian Sea. Cont Shelf Res. 15 (2-3): 315-336. DOI: https://doi.org/10.1016/0278-4343(94)E0001-3

Carreto JI, Montoya NG, Akselman R, Negri RM, Carignan MO, Cucchi Colleoni A. 2004. Differences in the PSP toxin profiles of Mytilus edulis during spring and autumn blooms of Alexandrium tamarense off Mar del Plata coast, Argentina. In: Steidinger KA, Landsberg J, Tomas CR, Vargo GA, editors. Harmful algae 2002 Florida Fish and Wildlife Conservation Commission, Florida Institute of Oceanography, and Intergovernmental Oceanographic Commission of UNESCO. p. 100-102.

Carreto JI, Montoya NG, Akselman R, Carignan MO, Silva RI, Colleoni DAC. 2008. Algal pigment patterns and phytoplankton assemblages in different water masses of the Río de la Plata maritime front. Cont Shelf Res. 28 (13): 1589-1606. DOI: https://doi.org/10.1016/j.csr.2007.02.012

Collos Y, Slawyk G. 1985. On the compatibility of carbon uptake rates calculated from stable and radioactive isotope data: Implications for the design of experimental protocols in aquatic primary productivity. J Plankton Res. 7 (5): 595-603. DOI: https://doi.org/10.1093/plankt/7.5.595

Cullen JJ, Franks PJ, Karl DM, Longhurst A. 2002. Physical influences on marine ecosystem dynamics. In: Robinson AR, McCarthy JJ, Rothschild BJ, editors. Biological-physical interactions in the sea. New York: Wiley. p. 297-336.

Cupp EE. 1943. Marine plankton diatoms of the west coast of North America. Bull Scripps Inst Oceanogr. 5 (1): 1-238.

de Boyer Montégut C, Madec G, Fischer AS, Lazar A, Iudicone D. 2004. Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res Oceans. 109: 12003. DOI: https://doi.org/10.1029/2004JC002378

Dogliotti AI, Lutz VA, Segura V. 2014. Estimation of primary production in the southern Argentine continental shelf and shelf-break regions using field and remote sensing data. Remote Sens Environ. 140: 497-508. DOI: https://doi.org/10.1016/j.rse.2013.09.021

Dubinsky Z, Falkowski PG, Wyman K. 1986. Light harvesting and utilization by phytoplankton. Plant Cell Physiol. 27 (7): 1335-1349. DOI: https://doi.org/10.1093/oxfordjournals.pcp.a077232

Edwards M, Beaugrand G, Hays GC, Koslow JA, Richardson A. 2010. Multi-decadal oceanic ecological datasets and their application in marine policy and management. Trends Ecol Evol. 25 (10): 602-610. DOI: https://doi.org/10.1016/j.tree.2010.07.007

Falkowski PG. 1980. Light-shade adaptation in marine phytoplankton. In: Falkowski PG, editor. Primary productivity in the sea. New York: Plenum Press. p. 99-119. DOI: https://doi.org/10.1007/978-1-4684-3890-1_6

Falkowski PG. 2002. On the evolution of the carbon cycle. In: Phytoplankton Productivity: Carbon assimilation in marine freshwater ecosystems. Blackwell. p. 318-349. DOI: https://doi.org/10.1002/9780470995204.ch12

Falkowski PG. 2012. The power of plankton: Do tiny floating microorganisms in the ocean’s surface waters play a massive role in controlling the global climate? Nature. 483 (7387): 17-20. DOI: https://doi.org/10.1038/483S17a

Falkowski PG, Laws EA, Barber RT, Murray JW. 2003. Phytoplankton and their role in primary, new, and export production. In: Ocean biogeochemistry: the role of the ocean carbon cycle in global change. Global Change - The IGBP Series. Springer. p. 99-121. DOI: https://doi.org/10.1007/978-3-642-55844-3_5

Fernández IC, Raimbault P, Garcia N, Rimmelin P, Caniaux G. 2005. An estimation of annual new production and carbon fluxes in the northeast Atlantic Ocean during 2001. J Geophys Res Oceans. 110 (C7). DOI: https://doi.org/10.1029/2004JC002616

Fontaine DN, Marrec P, Menden-Deuer S, Sosik HM, Rynearson TA.2025 Time series of phytoplankton net primary production reveals intense interannual variability and size-dependent chlorophyll-specific productivity on a continental shelf. Limnol Oceanogr. 70: 203-216. DOI: https://doi.org/10.1002/lno.12749

Franco BC, Palma ED, Combes V, Lasta M L. 2017. Physical processes controlling passive larval transport at the Patagonian Shelf Break Front. J Sea Res. 124: 17-25. DOI: https://doi.org/10.1016/j.seares.2017.04.012

Franks PJS. 2015. Has sverdrup’s critical depth hypothesis been tested? Mixed layers vs. Turbulent layers. ICES J Mar Sci. 72 (6): 1897-1907. DOI: https://doi.org/10.1093/icesjms/fsu175

Frouin R, Pinker R. 1995. Estimating photosynthetically active radiation (PAR) at the earth’s surface from satellite observations. Remote Sens Environ. 51 (1): 98-107. DOI: https://doi.org/10.1016/0034-4257(94)00068-X

Garcia VM, Garcia CA, Mata MM, Pollery RC, Piola AR, Signorini SR, McClain CR, Iglesias-Rodriguez MD. 2008. Environmental factors controlling the phytoplankton blooms at the Patagonia shelf-break in spring. Deep Sea Res 1 Oceanogr Res Pap. 55 (9): 1150-1166. DOI: https://doi.org/10.1016/j.dsr.2008.04.011

Geider RJ. 1987. Light and temperature dependence of the carbon to chlorophyll a ratio in microalgae and cyanobacteria: Implications for physiology and growth of phytoplankton. New Phytol. 106 (1): 1-34. DOI: https://doi.org/10.1111/j.1469-8137.1987.tb04788.x

Grasshoff K, Kremling K, Ehrhardt M. 1983. Determination of nutrients. In methods of seawater analysis. 2nd ed. Weinheim: WileyVCH.

Guerrero RA, Piola AR. 1997. Masas de agua en la plataforma continental. In: Boschi E, editor. El Mar Argentino y sus recursos pesqueros. Tomo 1. Antecedentes históricos de las exploraciones en el mar y las características ambientales. Mar del Plata: Instituto Nacional de Investigacion y Desarrollo Pesquero. p. 107-118.

Guiry MD, Guiry GM. 2025. AlgaeBase. World-wide electronic publication. University of Galway. [accessed 2025 Oct 21]. https://www.algaebase.org.

Hama T, Miyazaki T, Ogawa Y, Iwakuma T, Takahashi M, Otsuki A, Ichimura S. 1983. Measurement of photosynthetic production of a marine phytoplankton population using a stable 13C isotope. Mar Biol. 73 (1): 31-36. DOI: https://doi.org/10.1007/BF00396282

Hillebrand H, Dürselen C-D, Kirschtel D, Pollingher U, Zohary T. 1999. Biovolume calculation for pelagic and benthic microalgae. J Phycol. 35 (2): 403-424. DOI: https://doi.org/10.1046/j.1529-8817.1999.3520403.x

Hoepffner N, Sathyendranath S. 1992. Bio‐optical characteristics of coastal waters: absorption spectra of phytoplankton and pigment distribution in the western North Atlantic. Limnol Oceanogr. 37 (8): 1660-1679. DOI: https://doi.org/10.4319/lo.1992.37.8.1660

Holm-Hansen O, Lorenzen CJ, Holmes RW, Strickland JD. 1965. Fluorometric determination of chlorophyll. ICES J Mar Sci. 30 (1): 3-15. DOI: https://doi.org/10.1093/icesjms/30.1.3

IPCC 2019. IPCC Special report on the ocean and cryosphere in a changing climate. [accessed 2025 Oct 21]. https://www.ipcc.ch/srocc/.

Jan KM, Serandour B, Walve J, Winder M. 2024. Plankton blooms over the annual cycle shape trophic interactions under climate change. Limnol Oceanogr Lett. 9 (3): 209-218. DOI: https://doi.org/10.1002/lol2.10385

Karlson B, Godhe A, Cusack C, Bresnan E. 2010. Introduction to methods for quantitative phytoplankton analysis. In: Karlson B, Cusack C, Bresnan E, editors. Microscopic and molecular methods for quantitative phytoplankton analysis. UNESCO. p. 5-20.

Kavanaugh MT, Hales B, Saraceno M, Spitz YH, White AE, Letelier RM. 2014. Hierarchical and dynamic seascapes: a quantitative framework for scaling pelagic biogeochemistry and ecology. Prog Oceanogr. 120: 291-304. DOI: https://doi.org/10.1016/j.pocean.2013.10.013

Kulk G, Platt T, Dingle J, Jackson T, Jönsson BF, Bouman HA, Babin M, Brewin RJ, Doblin M, Estrada M. 2020. Primary production, an index of climate change in the ocean: Satellite-based estimates over two decades. Remote Sens Environ. 12 (5): 826. DOI: https://doi.org/10.3390/rs12050826

Lê S, Josse J, Husson F. 2008. Factominer: An R package for multivariate analysis. J Stat Softw. 25: 1-18. DOI: https://doi.org/10.18637/jss.v025.i01

Longhurst A, Sathyendranath S, Platt T, Caverhill C. 1995. An estimate of global primary production in the ocean from satellite radiometer data. J Plankton Res. 17 (6): 1245-1271. DOI: https://doi.org/10.1093/plankt/17.6.1245

Lora Vilchis MC. 2022. Cryptophyte: biology, culture, and biotechnological applications. In: Queiroz Zepka L, Jacob-Lopes E, Deprá MC, editors. Progress in microalgae research - a path for shaping sustainable futures. Rijeka: IntechOpen. p. 17-40. DOI: https://doi.org/10.5772/intechopen.107009

Lucas AJ, Guerrero RA, Mianzán HW, Acha EM, Lasta CA. 2005. Coastal oceanographic regimes of the Northern Argentine Continental Shelf (34-43° S). Estuar Coast Shelf Sci. 65 (3): 405-420. DOI: https://doi.org/10.1016/j.ecss.2005.06.015

Lund JWG, Kipling C, Le Cren E. 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia. 11 (2): 143-170. DOI: https://doi.org/10.1007/BF00007865

Lutz VA, Ruiz MG, Segura V. 2021. Protocolo para la determinación del coeficiente de absorción espectral de la luz por el material particulado (total, no-algal y fitoplancton) en agua de mar. Inf Proc Operc INIDEP Nº 3/2021. 10 p.

Lutz VA, Segura V, Dogliotti AI, Gagliardini DA, Bianchi AA, Balestrini CF. 2010. Primary production in the Argentine Sea during spring estimated by field and satellite models. J Plankton Res. 32 (2): 181-195. DOI: https://doi.org/10.1093/plankt/fbp117

Lutz VA, Segura V, Dogliotti A, Tavano V, Brandini FP, Calliari DL, Ciotti AM, Villafañe VF, Schloss IR, Corrêa FMS. 2018. Overview on primary production in the Southwestern Atlantic. In: Hoffmeyer M, Sabatini M, Brandini F, Calliari D, Santinelli N, editors. Plankton ecology of the Southwestern Atlantic: from the subtropical to the subantarctic realm. Springer. p. 101-126. DOI: https://doi.org/10.1007/978-3-319-77869-3_6

Lutz VA, Subramaniam A, Negri RM, Silva RI, Carreto JI. 2006. Annual variations in bio-optical properties at the ‘Estación Permanente de Estudios Ambientales (EPEA)’ coastal station, Argentina. Cont Shelf Res. 26 (10): 1093-1112. DOI: https://doi.org/10.1016/j.csr.2006.02.012

MacIntyre HL, Kana TM, Anning T, Geider RJ. 2002. Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. J Phycol. 38 (1): 17-38. DOI: https://doi.org/10.1046/j.1529-8817.2002.00094.x

Margalef R. 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol Acta. 1 (4): 493-509.

Menden-Deuer S, Lessard EJ. 2000. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol Oceanogr. 45 (3): 569-579. DOI: https://doi.org/10.4319/lo.2000.45.3.0569

Mitchell BG. 1990. Algorithms for determining the absorption coefficient for aquatic particulates using the quantitative filter technique. Proc Ocean Optics X. 1302: 137-148. DOI: https://doi.org/10.1117/12.21440

Murphy J, Riley JP. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta. 27: 31-36. DOI: https://doi.org/10.1016/S0003-2670(00)88444-5

Negri R. 1993. Seminario taller sobre la dinámica marina y su impacto en la productividad de las regiones frontales del Mar Argentino. INIDEP Inf Téc. 1. 7 p.

Negri R, Akselman R, Carignan M, Cucchi Colleoni A, Díaz M, Diovisalvi N, Hozbor C, Leonarduzzi E, Lutz V, Molinari G. 2010. Plankton community and environmental conditions during a mid-shelf waters intrusion and upwelling at the EPEA station (Argentina). Meeting of the Americas AGU, Foz do Iguazu, Brazil. p. 8-10.

Nixon SW. 1995. Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia. 41 (1): 199-219. DOI: https://doi.org/10.1080/00785236.1995.10422044

O’Brien TD, Lorenzoni LI, K., Valdés L. 2017. What are marine ecological time series telling us about the ocean? A status report. IOC-UNESCO, IOC Technical Series. 129. 297 p.

Piola AR, Matano RP, Palma ED, Möller Jr. OO, Campos EJD. 2005. The influence of the Plata River discharge on the western South Atlantic shelf. Geophys Res Lett. 32 (1): L01603. DOI: https://doi.org/10.1029/2004GL021638

Platt T, Gallegos CL. 1980. Modelling primary production. In: Falkowski PG, editor. Primary productivity in the sea. Boston: Springer. p. 339-362. DOI: https://doi.org/10.1007/978-1-4684-3890-1_19

Platt T, Gallegos CL, Harrison WG. 1980. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J Mar Res. 38 (4): 687-701.

Platt T, Sathyendranath S. 1988. Oceanic primary production: Estimation by remote sensing at local and regional scales. Science. 241 (4873): 1613-1620. DOI: https://doi.org/10.1126/science.241.4873.1613

Platt T, Sathyendranath S, Ulloa O, Harrison WG, Hoepffner N, Goes J. 1992. Nutrient control of phytoplankton photosynthesis in the western North Atlantic. Nature. 356 (6366): 229-231. DOI: https://doi.org/10.1038/356229a0

R Core Team. 2024. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org/.

Ratnarajah L, Abu-Alhaija R, Atkinson A, Batten S, Bax NJ, Bernard KS, Canonico G, Cornils A, Everett JD, Grigoratou M. 2023. Monitoring and modelling marine zooplankton in a changing climate. Nat Commun. 14 (1): 564. DOI: https://doi.org/10.1038/s41467-023-36241-5

Ruiz MG. 2018. Variabilidad de las propieades bio-ópticas en la serie de tiempo Estación Permanente de Estudios Ambientales (EPEA) complementando mediciones in situ y satelitales [PhD thesis]. Mar del Plata: Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata. 137 p.

Ruiz MG, Coy MBM, Carignan MC, Albornoz M, Molinari GN, Montoya NG. 2025. Seasonal variability of phytoplankton community structure in a coastal station of the Argentine continental shelf based on a chemotaxonomic approach. Mar Fish Sci. 38 (1): 61-83. DOI: https://doi.org/10.47193/mafis.3812025010105

Ruiz MG, Lutz VA, Segura V, Berghoff CF, Negri R. 2020. The color of EPEA: variability in the in situ bio-optical properties in the period 2000-2017. Mar Fish Sci. 33 (2): 205-225. DOI: https://doi.org/10.47193/mafis.3322020301105

Sathyendranath S, Lazzara L, Prieur L. 1987. Variations in the spectral values of specific absorption of phytoplankton. Limnol Oceanogr. 32 (2): 403-415. DOI: https://doi.org/10.4319/lo.1987.32.2.0403

Sathyendranath S, Platt T. 1988. The spectral irradiance field at the surface and in the interior of the ocean: a model for applications in oceanography and remote sensing. J Geophys Res Oceans. 93 (C8): 9270-9280. DOI: https://doi.org/10.1029/JC093iC08p09270

Sathyendranath S, Platt T, Kovač Ž, Dingle J, Jackson T, Brewin RJ, Franks P, Marañón E, Kulk G, Bouman HA. 2020. Reconciling models of primary production and photoacclimation. Appl Opt. 59 (10): 100-114. DOI: https://doi.org/10.1364/AO.386252

Segura V. 2013. Variaciones en la producción primaria en relación con los distintos tipos funcionales del fitoplancton en el Mar Argentino [PhD thesis]. Mar del Plata: Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata. 139 p.

Segura V, Lutz VA, Dogliotti A, Silva RI, Negri RM, Akselman R, Benavides H. 2013. Phytoplankton types and primary production in the Argentine Sea. Mar Ecol Prog Ser. 491: 15-31. DOI: https://doi.org/10.3354/meps10461

Segura V, Silva RI, Clara ML, Martos P, Cozzolino E, Lutz VA. 2021. Primary production and plankton assemblages in the fisheries ground around San Jorge Gulf (Patagonia) during spring and summer. Plankton Benthos Res. 16 (1): 24-39. DOI: https://doi.org/10.3800/pbr.16.24

Silva R, Negri R, Lutz V. 2009. Summer succession of ultraphytoplankton at the EPEA coastal station (Northern Argentina). J Plankton Res. 31 (4): 447-458. DOI: https://doi.org/10.1093/plankt/fbn128

Smayda TJ. 1997. Harmful algal blooms: their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnol Oceanog. 42 (5 part 2): 1137-1153. DOI: https://doi.org/10.4319/lo.1997.42.5_part_2.1137

Smyth T, Moffat D, Tarran G, Sathyendranath S, Ribalet F, Casey J. 2023. Determining drivers of phytoplankton carbon to chlorophyll ratio at Atlantic Basin scale. Front Mar Sci. 10: 1191216. DOI: https://doi.org/10.3389/fmars.2023.1191216

Stoecker DK, Hansen PJ, Caron DA, Mitra A. 2017. Mixotrophy in the marine plankton. Ann Rev Mar Sci. 9 (1): 311-335. DOI: https://doi.org/10.1146/annurev-marine-010816-060617

Sverdrup HU. 1953. On conditions for the vernal blooming of phytoplankton. J Cons. 18 (3): 287-295. DOI: https://doi.org/10.1093/icesjms/18.3.287

Tiselius P, Belgrano A, Andersson L, Lindahl O. 2016. Primary productivity in a coastal ecosystem: a trophic perspective on a long-term time series. J Plankton Res. 38 (4): 1092-1102. DOI: https://doi.org/10.1093/plankt/fbv094

Tomas CR. 1997. Identifying marine phytoplankton. Cambridge: Elsevier.

Valdés L, Lomas M. 2017. New light for ship-based time series. In: O’Brien TD, Lorenzoni L, Isensee K, Valdés L, editors. What are Marine Ecological Time Series telling us about the ocean. A status report. IOC UNESCO, IOC Technical Series. No. 129. p. 11-17.

Veritiy PG, Sieracki ME. 1993. Use of color image analysis and epifluorescence microscopy to measure plankton biomass. In: Kemp PF, Sherr BF, Sherr EB, Cole JJ, editors. Handbook of methodology in aquatic microbial ecology. Boca Raton: Lewis Publishers. p. 187-197.

Viñas MD, Cepeda GD, Clara ML. 2021. Linking long-term changes of the zooplankton community to the environmental variability at the EPEA station (southwestern Atlantic Ocean). Mar Fish Sci. 34 (2): 211-234. DOI: https://doi.org/10.47193/mafis.3422021010610

Volk T, Hoffert MI. 1985. Ocean carbon pumps: analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes. In: Sundquist ET, Broecker WS, editors. The carbon cycle and atmospheric CO2: natural variations archean to present. Geophysical Monograph. Vol. 32. Washington: AGU. p. 99-110. DOI: https://doi.org/10.1029/GM032p0099

Young JR, Bown PR, Lees JA. 2022. Nannotax3 website. International Nannoplankton Association. [accessed 2022 Apr 21]. https://www.mikrotax.org/Nannotax3.

Published

2025-11-27

How to Cite

Segura, V., Del Valle, D., Lutz, V. A., Luz Clara, M., Silva, R. I., Fernández Acuña, J., Ruiz, M. G., Allega, L., Berghoff, C. F., García Facal, G., & Epherra, L. (2025). Seasonal primary production at the EPEA station, southwestern Atlantic: relationships with phytoplankton composition and environmental properties. Marine and Fishery Sciences (MAFIS), 39(1). https://doi.org/10.47193/mafis.3912026010104

Most read articles by the same author(s)