Effects of artificial light at night on the mobility of the sea urchin Paracentrotus lividus
DOI:
https://doi.org/10.47193/mafis.3712024010106Keywords:
Italy, light pollution, mobility, sea urchin, taggingAbstract
Light pollution poses a significant global threat to biodiversity, driven by the increasing coastal urbanization and the resulting growth of artificial light at night (ALAN). However, to date, the scientific community has focused mainly on studying its ecological effects within the terrestrial environment. It is only recently that attention has turned to coastal marine systems which are crucial due to their essential contribution at the ecosystem level. These environments, characterized by their high productivity, also play a crucial role in protecting coasts against erosion. The aim of this case study was to investigate the possible effects of ALAN on the sea urchin species Paracentrotus lividus in four areas of an Italian rocky coast, selected according to a gradient of light intensity (0, 0.4, 3 and 25 lux), from April 2022 to February 2023. Effects of ALAN were examined by measuring the density and size of sea urchins and also their reactivity to a stress condition through an innovative technique of overturning sea urchins to study their physiological response in the presence or absence of artificial light. In addition, the permanence of sea urchins in the four areas was evaluated through an efficient tagging test. Results show how these organisms, typically nocturnal, suffer negative effects of ALAN in terms of minor density and mobility, expressed as the speed of response to an adverse event, compared to a dark area.
Downloads
Metrics
References
Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, Silliman BR. 2011. The value of estuarine and coastal ecosystem services. Ecol Monogr. 81 (2): 169-193. DOI: https://doi.org/10.1890/10-1510.1
Benedetti-Cecchi L, Bulleri F, Cinelli F. 1998. Density dependent foraging of sea urchins in shallow subtidal reefs on the west coast of Italy (western Mediterranean). Mar Ecol Prog Ser. 163: 203-211. DOI: http://doi.org/10.3354/meps163203
Bird BL, Branch LC, Miller DL. 2004. Effects of coastal lighting on foraging behavior of beach mice. Conserv Biol. 18: 1435-1439. DOI: https://doi.org/10.1111/j.1523-1739.2004.00349.x
Boarda J, Arthur R, Alonso D, Pagès JF, Pessarrodona A, Oliva S, Ceccherelli G, Piazzi L, Romero J, Alcoverro T. 2017. Immanent conditions determine imminent collapses: nutrient regimes define the resilience of macroalgal communities. Proc R Soc B. 284: 20162814. DOI: https://doi.org/10.1098/rspb.2016.2814
Boarda J, Sanmarti N, Selden RL, Lucas A, Pérez M, Alcoverro T, Romero J. 2015. Evaluating potential artifacts of tethering techniques to estimate predation on sea urchins. J Exp Mar Biol Ecol. 471: 17-22. DOI: https://doi.org/10.1016/j.jembe.2015.05.011
Bose APH, Zayonc D, Avrantinis N, Ficzycz N, Fischer-Rush J, Francis FT, Gray S, Manning F, Robb H, Schmidt C, Spice C, Umedaly A, Warden J, Côté IM. 2019. Effects on handling and short-term captivity: a multi-behaviour approach using red sea urchins, Mesocentrotus franciscanus. PeerJ. 7: e6556. DOI: https://doi.org/10.7717/peerj.6556
Bulleri F, Benedetti-Cecchi L, Cinelli F. 1999. Grazing by the sea urchins Arbacia lixula L. and Paracentrotus lividus Lam. in the northwest Mediterranean. J Exp Mar Biol Ecol. 241: 81-95. DOI: https://doi.org/10.1016/S0022-0981(99)00073-8
Ceccherelli G, Pais A, Pinna S, Sechi N, Chessa LA. 2011. Human impact on Paracentrotus lividus: the result of harvest restrictions and accessibility of locations. Mar Biol. 158 (4): 845-852. DOI: http://doi.org/10.1007/s00227-010-1611-5
Cipriano A, Burnell G, Culloty S, Long S. 2014. Evaluation of 3 tagging methods in marking sea urchin, Paracentrotus lividus, populations under both laboratory and field conditions. J Aquacult Res Develop. 5: 276. DOI: http://doi.org/10.4172/2155-9546.1000276
Davies TW, Duffy JP, Bennie J, Gaston KJ. 2014. The nature, extent, and ecological implications of marine light pollution. Front Ecol Environ. 12 (6): 347-355. DOI: https://doi.org/10.1890/130281
Davies TW, Duffy JP, Bennie J, Gaston KJ. 2016. Stemming the tide of light pollution encroaching into marine protected areas. Conserv Lett. 9 (3): 164-171. DOI: https://doi.org/10.1111/conl.12191
Dee LE, Witman JD, Brandt M. 2012. Refugia and top-down control of the pencil urchin Eucidaris galapagensis in the Galápagos Marine Reserve. J Exp Mar Biol Ecol. 416: 135-143. DOI: https://doi.org/10.1016/j.jembe.2012.02.016
Di Bari D, Tiberti C, Mazzei E, Papetti L, Pagli D. 2023. Light pollution and sea turtles nest-site selection. Is it possible a practical management of the problem? Eur J Sustain Dev. 12 (2): 35-46. DOI: https://doi.org/10.14207/ejsd.2023.v12n2p35
Duggan RE, Miller RJ. 2001. External and internal tags for the green sea urchin. J Exp Mar Biol Ecol. 258: 115-122. DOI: https://doi.org/10.1016/s0022-0981(01)00213-1
Ebert TA. 1965. A technique for the individual marking of sea urchins. Ecology. 46: 193-194. DOI: https://doi.org/10.2307/1935273
Farina S, Baroli M, Brundu R, Conforti A, Cucco A, De Falco G, Guala I, Guerzoni S, Massaro G, Quattrocchi G, et al. 2020. The challenge of managing the commercial harvesting of the sea urchin Paracentrotus lividus: advanced approaches are required. PeerJ. 8: e10093. DOI: https://doi.org/10.7717/peerj.10093
Figueiro MG, Sahin L, Roohan C, Kalsher M, Plitnick B, Rea MS. 2019. Effects of red light on sleep inertia. Nat Sci Sleep. 11: 45-57. DOI: https://doi.org/10.2147%2FNSS.S195563
Filbee-Dexter K, Scheibling RE. 2014. Sea urchin barrens as alternative stable states of collapsed kelp ecosystems. Mar Ecol Prog Ser. 495: 1-25. DOI: https://doi.org/10.3354/MEPS10573
Garratt MJ, Jenkins SR, Davies TW. 2019. Mapping the consequences of artificial light at night for intertidal ecosystems. Sci Total Environ. 691: 760-768. DOI: https://doi.org/10.1016/j.scitotenv.2019.07.156
Gaston KJ, Davies TW, Bennie J, Hopkins J. 2012. Reducing the ecological consequences of night-time light pollution: options and developments. J Appl Ecol. 49 (6): 1256-1266. DOI: https://doi.org/10.1111/j.1365-2664.2012.02212.x
Hereu B. 2005. Movement patterns of the sea urchin Paracentrotus lividus in a marine reserve and an unprotected area in the NW Mediterranean. Mar Ecol. 26 (1): 54-62. DOI: https://doi.org/10.1111/j.1439-0485.2005.00038.x
Karakostis K, Zanella-Cléon I, Immel F, Guichard N, Dru P, Lepage T, Plasseraud L, Matranga V, Marin F. 2016. A minimal molecular toolkit for mineral deposition? Biochemistry and proteomics of the test matrix of adult specimens of the sea urchin Paracentrotus lividus. J Proteomics. 136: 133-144. DOI: https://doi.org/10.1016/j.jprot.2016.01.001
Luijendijk A, Hagenaars G, Raasinghe R, Baart F, Donchyts G, Aarninkhof S. 2018. The state of the world’s beaches. Sci Rep. 8: 6641. DOI: https://doi.org/10.1038/s41598-018-24630-6
Macedo S, Torres T, Santos MM. 2017. Methyl-triclosan and triclosan impact embryonic development of Danio rerio and Paracentrotus lividus. Ecotoxicology. 328: 46-53. DOI: https://doi.org/10.1007/s10646-017-1778-3
Millott N. 1976. The photosensitivity of echinoids. Adv Mar Biol. 13: 1-52. DOI: https://doi.org/10.1016/S0065-2881(08)60279-5
[MRAAF] Ministero delle Risorse Agricole, Alimentari e Forestali. 1995. Decreto ministeriale 12 gennaio 1995 in materia di Disciplina della pesca del riccio di mare. GURI 25 gennaio 1995. Nº 20. https://www.gazzettaufficiale.it/eli/id/1995/01/25/095A0345/sg.
Pearse JS. 2006. Ecological role of purple sea urchins. Science. 314: 940-941. DOI: https://doi.org/10.1126/science.1131888
Pinsino A, Alijagic A. 2019 Sea urchin Paracentrotus lividus immune cells in culture: formulation of the appropriate harvesting and culture media and maintenance conditions. Biol Open. 8 (3): bio039289. DOI: http://doi.org/10.1242/bio.039289
Romancino DP, Anello L, Lavanco A, Buffa V, Di Bernardo M, Bongiovanni A. 2017. A sea urchin in vivo model to evaluate Epithelial-Mesenchymal Transition. Dev Growth Differ. 59 (3): 141-151. DOI: https://doi.org/10.1111/dgd.12353
Sala E, Zabala M. 1996. Fish predation and the structure of the sea urchin Paracentrotus lividus populations in the NW Mediterranean. Mar Ecol Prog Ser. 140: 71-81. DOI: http://doi.org/10.3354/meps140071
Satthong S, Saego K, Kitrungoloadjanaporn P, Nuttavut N, Amornsamankul S, Triampo W. 2019. Modeling the effects of light sources on the growth of algae. Adv Differ Equ. 170. DOI: https://doi.org/10.1186/s13662-019-2112-6
Shpigel M, McBride SC, Marciano S, Lupatsch I. 2004. The effect of photoperiod and temperature on the reproduction of European sea urchin Paracentrotus lividus. Aquaculture. 232: 343-355. DOI: https://doi.org/10.1016/S0044-8486(03)00539-8
Stewart NL, Konar B. 2012. Kelp forest versus urchin barrens: alternate stable states and their effect on sea otter prey quality in the Aleutian Island. J Mar Sci. 2012: 492308. DOI: https://doi.org/10.1155/2012/492308
Ullrich-Lüter J, Dupont S, Arboleda E, Hausen H, Arnone M. 2011. Unique system of photoreceptors in sea urchin tube feet. Proc Nal Acad Sci. 108 (20): 8367-8372. DOI: https://doi.org/10.1073/pnas.1018495108
Wangesteen OS, Turon X, Casso M, Palacín C. 2013. The reproductive cycle of the sea urchin Arbacia lixula in northwest Mediterranean: potential influence of temperature and photoperiod. Mar Biol. 160: 3157-3168. DOI: http://doi.org/10.1007/s00227-013-2303-8
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Davide Di Bari
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors of articles published in Marine and Fishery Sciences retain copyright on their articles, except for any third-party images and other materials added by Marine and Fishery Sciences, which are subject to copyright of their respective owners. Authors are therefore free to disseminate and re-publish their articles, subject to any requirements of third-party copyright owners and subject to the original publication being fully cited. Visitors may also download and forward articles subject to the citation requirements. The ability to copy, download, forward or otherwise distribute any materials is always subject to any copyright notices displayed. Copyright notices must be displayed prominently and may not be obliterated, deleted or hidden, totally or partially.
This journal offers authors an Open Access policy. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other legal purpose within the Creative Commons 4.0 license (BY-NC-SA), without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of Open Access.