Effects of artificial light at night on the mobility of the sea urchin Paracentrotus lividus

Authors

DOI:

https://doi.org/10.47193/mafis.3712024010106

Keywords:

Italy, light pollution, mobility, sea urchin, tagging

Abstract

Light pollution poses a significant global threat to biodiversity, driven by the increasing coastal urbanization and the resulting growth of artificial light at night (ALAN). However, to date, the scientific community has focused mainly on studying its ecological effects within the terrestrial environment. It is only recently that attention has turned to coastal marine systems which are crucial due to their essential contribution at the ecosystem level. These environments, characterized by their high productivity, also play a crucial role in protecting coasts against erosion. The aim of this case study was to investigate the possible effects of ALAN on the sea urchin species Paracentrotus lividus in four areas of an Italian rocky coast, selected according to a gradient of light intensity (0, 0.4, 3 and 25 lux), from April 2022 to February 2023. Effects of ALAN were examined by measuring the density and size of sea urchins and also their reactivity to a stress condition through an innovative technique of overturning sea urchins to study their physiological response in the presence or absence of artificial light. In addition, the permanence of sea urchins in the four areas was evaluated through an efficient tagging test. Results show how these organisms, typically nocturnal, suffer negative effects of ALAN in terms of minor density and mobility, expressed as the speed of response to an adverse event, compared to a dark area.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, Silliman BR. 2011. The value of estuarine and coastal ecosystem services. Ecol Monogr. 81 (2): 169-193. DOI: https://doi.org/10.1890/10-1510.1

Benedetti-Cecchi L, Bulleri F, Cinelli F. 1998. Density dependent foraging of sea urchins in shallow subtidal reefs on the west coast of Italy (western Mediterranean). Mar Ecol Prog Ser. 163: 203-211. DOI: http://doi.org/10.3354/meps163203

Bird BL, Branch LC, Miller DL. 2004. Effects of coastal lighting on foraging behavior of beach mice. Conserv Biol. 18: 1435-1439. DOI: https://doi.org/10.1111/j.1523-1739.2004.00349.x

Boarda J, Arthur R, Alonso D, Pagès JF, Pessarrodona A, Oliva S, Ceccherelli G, Piazzi L, Romero J, Alcoverro T. 2017. Immanent conditions determine imminent collapses: nutrient regimes define the resilience of macroalgal communities. Proc R Soc B. 284: 20162814. DOI: https://doi.org/10.1098/rspb.2016.2814

Boarda J, Sanmarti N, Selden RL, Lucas A, Pérez M, Alcoverro T, Romero J. 2015. Evaluating potential artifacts of tethering techniques to estimate predation on sea urchins. J Exp Mar Biol Ecol. 471: 17-22. DOI: https://doi.org/10.1016/j.jembe.2015.05.011

Bose APH, Zayonc D, Avrantinis N, Ficzycz N, Fischer-Rush J, Francis FT, Gray S, Manning F, Robb H, Schmidt C, Spice C, Umedaly A, Warden J, Côté IM. 2019. Effects on handling and short-term captivity: a multi-behaviour approach using red sea urchins, Mesocentrotus franciscanus. PeerJ. 7: e6556. DOI: https://doi.org/10.7717/peerj.6556

Bulleri F, Benedetti-Cecchi L, Cinelli F. 1999. Grazing by the sea urchins Arbacia lixula L. and Paracentrotus lividus Lam. in the northwest Mediterranean. J Exp Mar Biol Ecol. 241: 81-95. DOI: https://doi.org/10.1016/S0022-0981(99)00073-8

Ceccherelli G, Pais A, Pinna S, Sechi N, Chessa LA. 2011. Human impact on Paracentrotus lividus: the result of harvest restrictions and accessibility of locations. Mar Biol. 158 (4): 845-852. DOI: http://doi.org/10.1007/s00227-010-1611-5

Cipriano A, Burnell G, Culloty S, Long S. 2014. Evaluation of 3 tagging methods in marking sea urchin, Paracentrotus lividus, populations under both laboratory and field conditions. J Aquacult Res Develop. 5: 276. DOI: http://doi.org/10.4172/2155-9546.1000276

Davies TW, Duffy JP, Bennie J, Gaston KJ. 2014. The nature, extent, and ecological implications of marine light pollution. Front Ecol Environ. 12 (6): 347-355. DOI: https://doi.org/10.1890/130281

Davies TW, Duffy JP, Bennie J, Gaston KJ. 2016. Stemming the tide of light pollution encroaching into marine protected areas. Conserv Lett. 9 (3): 164-171. DOI: https://doi.org/10.1111/conl.12191

Dee LE, Witman JD, Brandt M. 2012. Refugia and top-down control of the pencil urchin Eucidaris galapagensis in the Galápagos Marine Reserve. J Exp Mar Biol Ecol. 416: 135-143. DOI: https://doi.org/10.1016/j.jembe.2012.02.016

Di Bari D, Tiberti C, Mazzei E, Papetti L, Pagli D. 2023. Light pollution and sea turtles nest-site selection. Is it possible a practical management of the problem? Eur J Sustain Dev. 12 (2): 35-46. DOI: https://doi.org/10.14207/ejsd.2023.v12n2p35

Duggan RE, Miller RJ. 2001. External and internal tags for the green sea urchin. J Exp Mar Biol Ecol. 258: 115-122. DOI: https://doi.org/10.1016/s0022-0981(01)00213-1

Ebert TA. 1965. A technique for the individual marking of sea urchins. Ecology. 46: 193-194. DOI: https://doi.org/10.2307/1935273

Farina S, Baroli M, Brundu R, Conforti A, Cucco A, De Falco G, Guala I, Guerzoni S, Massaro G, Quattrocchi G, et al. 2020. The challenge of managing the commercial harvesting of the sea urchin Paracentrotus lividus: advanced approaches are required. PeerJ. 8: e10093. DOI: https://doi.org/10.7717/peerj.10093

Figueiro MG, Sahin L, Roohan C, Kalsher M, Plitnick B, Rea MS. 2019. Effects of red light on sleep inertia. Nat Sci Sleep. 11: 45-57. DOI: https://doi.org/10.2147%2FNSS.S195563

Filbee-Dexter K, Scheibling RE. 2014. Sea urchin barrens as alternative stable states of collapsed kelp ecosystems. Mar Ecol Prog Ser. 495: 1-25. DOI: https://doi.org/10.3354/MEPS10573

Garratt MJ, Jenkins SR, Davies TW. 2019. Mapping the consequences of artificial light at night for intertidal ecosystems. Sci Total Environ. 691: 760-768. DOI: https://doi.org/10.1016/j.scitotenv.2019.07.156

Gaston KJ, Davies TW, Bennie J, Hopkins J. 2012. Reducing the ecological consequences of night-time light pollution: options and developments. J Appl Ecol. 49 (6): 1256-1266. DOI: https://doi.org/10.1111/j.1365-2664.2012.02212.x

Hereu B. 2005. Movement patterns of the sea urchin Paracentrotus lividus in a marine reserve and an unprotected area in the NW Mediterranean. Mar Ecol. 26 (1): 54-62. DOI: https://doi.org/10.1111/j.1439-0485.2005.00038.x

Karakostis K, Zanella-Cléon I, Immel F, Guichard N, Dru P, Lepage T, Plasseraud L, Matranga V, Marin F. 2016. A minimal molecular toolkit for mineral deposition? Biochemistry and proteomics of the test matrix of adult specimens of the sea urchin Paracentrotus lividus. J Proteomics. 136: 133-144. DOI: https://doi.org/10.1016/j.jprot.2016.01.001

Luijendijk A, Hagenaars G, Raasinghe R, Baart F, Donchyts G, Aarninkhof S. 2018. The state of the world’s beaches. Sci Rep. 8: 6641. DOI: https://doi.org/10.1038/s41598-018-24630-6

Macedo S, Torres T, Santos MM. 2017. Methyl-triclosan and triclosan impact embryonic development of Danio rerio and Paracentrotus lividus. Ecotoxicology. 328: 46-53. DOI: https://doi.org/10.1007/s10646-017-1778-3

Millott N. 1976. The photosensitivity of echinoids. Adv Mar Biol. 13: 1-52. DOI: https://doi.org/10.1016/S0065-2881(08)60279-5

[MRAAF] Ministero delle Risorse Agricole, Alimentari e Forestali. 1995. Decreto ministeriale 12 gennaio 1995 in materia di Disciplina della pesca del riccio di mare. GURI 25 gennaio 1995. Nº 20. https://www.gazzettaufficiale.it/eli/id/1995/01/25/095A0345/sg.

Pearse JS. 2006. Ecological role of purple sea urchins. Science. 314: 940-941. DOI: https://doi.org/10.1126/science.1131888

Pinsino A, Alijagic A. 2019 Sea urchin Paracentrotus lividus immune cells in culture: formulation of the appropriate harvesting and culture media and maintenance conditions. Biol Open. 8 (3): bio039289. DOI: http://doi.org/10.1242/bio.039289

Romancino DP, Anello L, Lavanco A, Buffa V, Di Bernardo M, Bongiovanni A. 2017. A sea urchin in vivo model to evaluate Epithelial-Mesenchymal Transition. Dev Growth Differ. 59 (3): 141-151. DOI: https://doi.org/10.1111/dgd.12353

Sala E, Zabala M. 1996. Fish predation and the structure of the sea urchin Paracentrotus lividus populations in the NW Mediterranean. Mar Ecol Prog Ser. 140: 71-81. DOI: http://doi.org/10.3354/meps140071

Satthong S, Saego K, Kitrungoloadjanaporn P, Nuttavut N, Amornsamankul S, Triampo W. 2019. Modeling the effects of light sources on the growth of algae. Adv Differ Equ. 170. DOI: https://doi.org/10.1186/s13662-019-2112-6

Shpigel M, McBride SC, Marciano S, Lupatsch I. 2004. The effect of photoperiod and temperature on the reproduction of European sea urchin Paracentrotus lividus. Aquaculture. 232: 343-355. DOI: https://doi.org/10.1016/S0044-8486(03)00539-8

Stewart NL, Konar B. 2012. Kelp forest versus urchin barrens: alternate stable states and their effect on sea otter prey quality in the Aleutian Island. J Mar Sci. 2012: 492308. DOI: https://doi.org/10.1155/2012/492308

Ullrich-Lüter J, Dupont S, Arboleda E, Hausen H, Arnone M. 2011. Unique system of photoreceptors in sea urchin tube feet. Proc Nal Acad Sci. 108 (20): 8367-8372. DOI: https://doi.org/10.1073/pnas.1018495108

Wangesteen OS, Turon X, Casso M, Palacín C. 2013. The reproductive cycle of the sea urchin Arbacia lixula in northwest Mediterranean: potential influence of temperature and photoperiod. Mar Biol. 160: 3157-3168. DOI: http://doi.org/10.1007/s00227-013-2303-8

Downloads

Published

2024-01-01

How to Cite

Di Bari, D. (2024) “Effects of artificial light at night on the mobility of the sea urchin Paracentrotus lividus”, Marine and Fishery Sciences (MAFIS), 37(1), pp. 41–52. doi: 10.47193/mafis.3712024010106.