Marine and Fishery sciences 38 (2): xxx-xxx (2025)
10
cultivated in Bangladesh. Int J Biosci. 16 (3):
481-494.
baek hh, cadwallader kr. 1996. Volatile com-
pounds in avor concentrates produced from
craysh-processing byproducts with and with-
out protease treatment. J Agric Food Chem. 44
(10): 3262-3267. DOI: http://doi.org/10.1021/
jf960023q
chalaMaiah M, JyothirMayi t, diwan PV,
dinesh kuMar b. 2015. Antioxidant activity
and functional properties of enzymatic protein
hydrolysates from common carp (Cyprinus car-
pio) roe (egg). J Food Sci Technol. 52: 5817-
5825. DOI: https://doi.org/10.1007/s13197-015-
1714-6
cheung iwy, cheung lky, tan ny, li-chan
ecy. 2012. The role of molecular size in an-
tioxidant activity of peptide fractions from Pa-
cic hake (Merluccius productus) hydrolysates.
Food Chem. 134 (3): 1297-1306. DOI: https://
doi.org/10.1016/j.foodchem.2012.02.215
FernÁndez herrero a, Vittone M, saloMone a.
2015. Biological silage of Merluccius hubbsi.
Amino acid composition, degree of hydrolysis,
and peptide size. Issues Biol Sci Pharm Res. 3
(6): 57-62.
FriedMan is, behrens la, Pereira ndla, con-
treras eM, FernÁndez-giMenez aV. 2022.
Digestive proteinases from the marine sh
processing wastes of the South-West Atlantic
Ocean: their partial characterization and com-
parison. J Fish Biol. 100 (1): 150-160. DOI:
https://doi.org/10.1111/jfb.14929
FriedMan is, contreras eM, FernÁndez-giMe-
nez aV. 2024. Catalytic stability of aspartic
proteinases recovered from viscera of Merluc-
cius hubbsi, Percophis brasiliensis, Urophicis
brasiliensis, and Cynoscion guatucupa. Waste
Biomass Valor. DOI: https://doi.org/10.1007/
s12649-024-02717-8
gao r, yu q, shen y, chu q, chen g, Fen s,
yang M, yuan l, MccleMents dJ, sun q.
2021. Production, bioactive properties, and
potential applications of sh protein hydro-
lysates: developments and challenges. Trends
Food Sci Technol. 110: 687-699. DOI: https://
doi.org/10.1016/j.tifs.2021.02.031
garcía-carreño Fl. 1992. The digestive pro-
teases of langostilla (Pleuroncodes planipes,
decapoda): their partial characterization, and
the effect of feed on their composition. Comp
Biochem Physiol B Comp Biochem. 103:
575-578. DOI: https://doi.org/10.1016/0305-
0491(92)90373-Y
góMez lJ, góMez na, zaPata Je, lóPez-garcía
g, cilla a, alegría a. 2020. Optimization
of the red tilapia (Oreochromis spp.) viscera
hydrolysis for obtaining iron-binding peptides
and evaluation of in vitro iron bioavailability.
Foods. 9: 883. DOI: https://doi.org/10.3390/
foods9070883
góngora hg, ledesMa P, ValVo Vrl, ruiz
ae, breccia Jy. 2012. Screening of lactic acid
bacteria for fermentation of minced wastes of
Argentinean hake (Merluccius hubbsi). Food
Bioprod Process. 90 (4): 767-772.
henriques a, VÁzquez Ja, Valcarcel J, Mendes
r, bandarra nM, Pires c. 2021. Characteriza-
tion of protein hydrolysates from sh discards
and by-products from the North-West Spain
shing eet as potential sources of bioactive
peptides. Mar Drugs. 19: 338. DOI: https://doi.
org/10.3390/md19060338
idowu at, benJakul s. 2019. Bitterness of sh
protein hydrolysate and its debittering pros-
pects. J Food Biochem. 43 (9): e12978. DOI:
https://doi.org/10.1111/jfbc.12978
karoud w, ghlissi z, krichen F, kallel r, bou-
gateF h, zarai z, boudawara t, sahnoun z,
sila a, bougateF a. 2020. Oil from hake (Mer-
luccius merluccius): characterization, antioxi-
dant activity, wound healing and anti-inamma-
tory effects. J Tissue Viability. 29 (2): 138-147.
DOI: https://doi.org/10.1016/j.jtv.2020.01.002
karoud w, sila a, krichen F, Martinez-alVa-
rez o, bougateF a. 2019. Characterization,
surface properties and biological activities of
protein hydrolysates obtained from hake (Mer-