MARINE AND FISHERY SCIENCES 35 (1): 67-80 (2022)
https://doi.org/10.47193/mafis.3512022010109
ABSTRACT. Food habits and diet composition of Patagonian flounder Paralichthys patagonicus
(Jordan, 1889) were studied on the basis of stomach content analyses from 828 specimens (512
females, 304 males, 12 unsexed) collected during 16 commercial cruises between February 2009 and
April 2010 in the Argentine-Uruguayan Coastal Ecosystem (34° S-41° S). A total of 272 stomachs
(32.9%) contained food (184 females and 84 males), among which 20 prey taxa were identified. The
most important prey category was pelagic fish, primarily Argentine anchovy (Engraulis anchoita),
followed by rough scad (Trachurus lathami). Evidence showed that females consumed a higher total
wet weight of prey compared to males. Results also suggested a specialised diet over E. anchoita,
across all sex and size groups. The estimated trophic level for the population of P. patagonicus was
4.16. This study suggests that P. patagonicus is a tertiary piscivorous consumer of the trophic food
web in the region, and reveals changes in the prey consumption compared with previous studies.
Key words: Diet, feeding strategy, spatio-temporal variation, trophic level.
Ecología trófica del lenguado patagónico Paralichthys patagonicus (Jordan, 1889) en el
Ecosistema Costero Argentino-Uruguayo
RESUMEN. Se estudiaron los hábitos alimentarios y la composición de la dieta del lenguado
patagónico Paralichthys patagonicus (Jordan, 1889) sobre la base del análisis del contenido esto-
macal de 828 especímenes (512 hembras, 304 machos, 12 indeterminados) recolectados durante 16
cruceros comerciales entre febrero de 2009 y abril de 2010 en el Ecosistema Costero Argentino-
Uruguayo (34° S-41° S). Un total de 272 estómagos (32,9%) contenían alimento (184 hembras y 84
machos), entre los que se identificaron 20 taxones de presas. La categoría de presa más importante
fue los peces pelágicos, principalmente la anchoíta argentina (Engraulis anchoita), seguida por el
surel (Trachurus lathami). La evidencia mostró que las hembras consumieron un mayor peso húme-
do total de presa en comparación con los machos. Los resultados también sugirieron una dieta espe-
cializada sobre E. anchoita para todos los sexos y tamaños. El nivel trófico estimado para toda la
población de P. patagonicus fue 4,16. Este estudio sugiere que P. patagonicus es un consumidor pis-
cívoro terciario de la trama trófica en la región, y revela cambios importantes en el consumo de pre-
sas en comparación con estudios previos.
Palabras clave: Dieta, estrategia alimenticia, variación espacio-temporal, nivel trófico.
67
*Correspondence:
andresmilessi@yahoo.com
Received: 5 September 2021
Accepted: 1 December 2021
ISSN 2683-7595 (print)
ISSN 2683-7951 (online)
https://ojs.inidep.edu.ar
Journal of the Instituto Nacional de
Investigación y Desarrollo Pesquero
(INIDEP)
This work is licensed under a Creative
Commons Attribution-
NonCommercial-ShareAlike 4.0
International License
Marine and
Fishery Sciences
MAFIS
ORIGINAL RESEARCH
Trophic ecology of Patagonian flounder Paralichthys patagonicus (Jordan,
1889) in the Argentine-Uruguayan Coastal Ecosystem
GONZALO H. TROCCOLI1, ANDRÉS C. MILESSI2, 3, *, NOEMÍ MARÍ1, DANIEL FIGUEROA4and AGUSTÍN M. DEWYSIECKI5
1Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo Nº 1, Escollera Norte, B7602HSA -
Mar del Plata, Argentina. 2Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), Argentina. 3Organización para la
Conservación de Cetáceos (OCC), Uruguay. 4Laboratorio de Biología de Peces, Instituto de Investigaciones Marinas y Costeras
(IIMyC-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de
Investigaciones Científicas y Técnicas (CONICET), Argentina. 5Centro para el Estudio de Sistemas Marinos (CESIMAR),
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Boulevard Brown 2915, U9120ACD - Puerto Madryn, Argentina.
ORCID Gonzalo H. Troccoli https://orcid.org/0000-0002-0057-4325, Andrés C. Milessi https://orcid.org/0000-0003-3897-4970,
Noemí Marí https://orcid.org/0000-0003-2278-6510, Daniel Figueroa https://orcid.org/0000-0003-3258-1092,
Agustín M. De Wysiecki https://orcid.org/0000-0002-0506-3495
INTRODUCTION
Predation in nature is a central ecological
process as it contributes to understanding the
interactions of predators with their prey within an
ecosystem (Elton 1927). Today, it is known that
relationships between two or more species are
described as nodes of a food web which can inter-
act with each other and, therefore, any alteration
can affect its stability (Lawton and Pimm 1978;
Sterner et al. 1997).
The main coastal fishery in Argentina is carried
out along the Argentine-Uruguayan Coastal
Ecosystem (AUCE, 34° S-41° S), namely the
Bonaerense Coastal Fishery (Carozza et al.
2004). More than 40 species are caught including
crustaceans, molluscs and fish. The latter are
grouped into the ‘varied coastal’, which is com-
posed of about 30 species, both bony and carti-
laginous fish (Lasta et al. 1998; Massa et al.
2004). In 2009, declared landings of 30 species
making up the coastal assemblage was 105,361 t,
from which 86.7% was obtained within the
AUCE (Fernández Aráoz et al. 2010).
In particular, the Patagonian flounder (Par-
alichthys patagonicus) is one of the main fishing
resources in the AUCE, due to both its excellent
meat quality and its high market price (Fabré
1992). As a result of its high commercial impor-
tance, overfishing is a major threat in the region,
leading this species to a vulnerable conservation
status (Riestra et al. 2020). Over the past decades,
annual catches ranged from 6,000 to 7,000 t
year-1, but more recently they shifted to an aver-
age of ~ 3,200 t year-1 (MAGyP 2021). In 2008,
for example, catches of P. patagonicus con-
tributed to 7% (6,930 t) of total declared landings
in the AUCE (Rico and Lagos 2010), whereas in
2009, this percentage slightly decreased to 6,4%
(5,890 t) (Fernández Aráoz et al. 2010). During
2020, the capture of flounders in Argentina and
Uruguay diminished significantly to 1,891 t,
accounting for 2.2% of total harvest (CTMFM
2021). Nevertheless, P. patagonicus continues to
be the one that predominates the catches among
the four species of flounder landed in the AUCE
(Rico and Perrotta 2009; Rico 2010).
Paralichthys patagonicus is a benthic species
inhabiting soft bottoms (Menni 1983), character-
ized as an ichthyophagous as well as a generalist
mesopredator (Carneiro 1995; Sánchez and Díaz
de Astarloa 1999). Its diet is based on fish with
demersal-benthic habits (40.4%), mainly banded
cusk-eel Raneya brasiliensis, and followed by
pelagic fish (31.0%), including rough scad Tra-
churus lathami and Argentine anchovy Engraulis
anchoita (Sánchez and Díaz de Astarloa 1999).
Previous studies were based on qualitative analy-
sis and did not provide the feeding strategy of P.
patagonicus, nor its trophic role or any changes in
diet concerning sex and size. Therefore, this work
aimed to quantitatively determine the diet compo-
sition of P. patagonicus and find possible differ-
ences in prey consumption between sex and size
groups, as well as its feeding strategies and troph-
ic position in the AUCE.
MATERIALS AND METHODS
Study area
The study area is located in the AUCE region
at the northern part of the Argentine Continental
Shelf, between 34° S and 41° S and from the
coastline to the 50 m deep isobath (Figure 1). On
a large scale, the AUCE is influenced by various
sources of oceanographic variability. In the north-
ern area, it receives the influence of the coastal
branch of the Brazil Current and the freshwater
discharge from the Río de la Plata (Guerrero et al.
1997). In the southern area, it is influenced by the
discharge of the Negro and Colorado rivers and
the salty waters of San Matías Gulf (Lucas et al.
2005). In the outer eastern waters, it receives the
68 MARINE AND FISHERY SCIENCES 35 (1): 67-80 (2022)
influence of the Continental Shelf Current (Lucas
et al. 2005).
Data sources
P. patagonicus were obtained from 16 fishery
landings of the commercial coastal fleet, carried
out between February 2009 and April 2010 in the
AUCE. Total length (LT, to the nearest cm), total
wet weight (WT, to the nearest g) and sex were
recorded from each specimen, and stomachs were
frozen to analyse prey composition.
Stomach content analysis
Prey items were identified to the lowest possi-
ble taxonomic level, counted and weighed. In the
case of fish remains such as otoliths, LT -WTand
otolith size-LTregression curves to estimate the
LTand WTof the prey were used (Koen Alonso et
al. 1998; Waessle et al. 2003; Díaz de Astarloa
2005; Barquete et al. 2008). In order to quantify
the importance of each prey item in the diet of P.
patagonicus, the percentage in number (%N),
percentage in WT(%W), frequency of occurrence
(%FO), Index of Relative Importance or IRI [IRIi
= %FOi× (%Ni+ %Wi) for each prey item i]
(Pinkas et al. 1971), and the IRI expressed as a
percentage (%IRI, Cortés 1997) were calculated.
Representativeness of stomach samples in the
description of the diet of species was analysed by
the minimum sample size and the intrinsic vari-
ability using randomization that considered
300,000 arrangements that produced curves for
accumulated prey groups (i.e. pelagic fish, dem-
ersal fish, benthic fish, molluscs and crus-
taceans). For each randomization, the minimum,
mean, maximum and coefficient of variation were
obtained, which made possible to assess whether
analysed sample met the minimum sample size.
Variations in the diet with sex and size
Possible quantitative differences in diet be-
tween females and males, and among size groups
of P. patagonicus, were analysed by running a
69
TROCCOLI ET AL.: DIET COMPOSITION OF PATAGONIAN FLOUNDER
Figure 1. Study area (grey shade) from which samples were taken within the Argentine-Uruguayan Coastal Ecosystem (AUCE),
delimited by the 50 m isobath.
35°
55°63°
Southwest Atlantic
37°
39°
41°
53°57°61° 59°
100 km
Uruguay
Argentina
South America
50 m
S
W
non-parametric Mann-Whitney and Kruskal-Wal-
lis tests, respectively. Data were arranged into
three different size groups according to the crite-
ria provided by previous growth studies of the
species (Riestra 2010): Group I (22-34 cm LT; 2
to 4 years), Group II (35-47 cm LT; 4 to 7 years)
and Group III (> 47 cm LT; > 8 years). In addi-
tion, prey type composition (main prey cate-
gories) was examined between sexes and among
size groups.
Feeding strategy
In order to determine the feeding strategy (i.e.
generalist or specialist) of P. patagonicus and the
importance of the prey, the graphic method of
Amundsen et al. (1996) was used. The specific
abundance of prey iwas plotted against %FOi.
Trophic level
The trophic level (TL) makes reference to the
position of a species or population in the trophic
web and its classification ranges from primary
producers with a value of 1 to large top predators
with values of 4 or 5 (Lindeman 1942). In the
present work, the fractional form was used as
suggested by Odum and Heald (1975), and then,
TL was calculated for the population of P. patag-
onicus by applying the methodology suggested
by Cortés (1999):
where TL is the trophic level of P. patagonicus
(predator), Pjis the proportion of the prey item jin
the predators stomach, TLjis the trophic level of
each prey item j, and nis the number of prey items
recorded in the stomach of the predator. Trophic
level of prey was obtained from online resources
(Froese and Pauly 2019) and published literature
(Jaureguizar and Milessi 2008; Milessi 2008).
TL 1= +
j1=
n
PTL´
jj
å)
RESULTS
Stomach contents
Out of 828 stomachs of P. patagonicus
analysed, 272 (32.9%) presented prey contents,
of which 184 were females and 84 males. Of the
stomachs with contents, 36 (13.24%) correspond-
ed to size group I, 176 (64.71%) to size group II,
and 60 (22.05%) to size group III. In a very low
percentage of specimens (1.45%), the sex could
not be determined. The cumulative curves of the
number of prey categories as a function of the
number of stomachs sampled with prey content
indicated that the number of samples was suffi-
cient to describe and quantitatively analyse the
diet of P. patagonicus and compare it between
size groups and sexes (Figure 2).
Twenty prey items were identified, correspon-
ding to three taxonomic groups: fish, molluscs
and crustaceans. Fish were the most frequently
encountered prey (%FO = 87.55), followed by
crustaceans (%FO = 8.20) and cephalopod (%FO
= 3.41) (Table 1). The most frequent prey item
was E. anchoita (%FO = 37.60), followed by T.
lathami (%FO = 18.12) and R. brasiliensis (%FO
= 9.19). The most common prey item was E.
anchoita (%N = 52.94), followed by T. lathami
(%N = 18.21) (Table 1). Regarding the percent-
age by weight, fish were the most important
group (%W = 96.53), followed by molluscs (%W
= 2.31) and crustaceans (%W = 0.71) (Table 1).
The best-represented species by weight were E.
anchoita (%W = 36.62) and T. lathami (%W =
26.17). The Relative Importance Index (%IRI)
indicated that the most important item in the diet
was fish (98.73), followed by crustaceans (0.91)
and cephalopods (0.35) (Table 1). Among fish
prey, the species with the highest contribution
was E. anchoita (%IRI = 74.25), followed by T.
lathami (%IRI = 18.22) and R. brasiliensis (%IRI
= 4.18). Among cephalopod prey, squid (Loligo
70 MARINE AND FISHERY SCIENCES 35 (1): 67-80 (2022)
sanpaulensis) accounted for 0.35%, and the
Argentine red shrimp (Pleoticus muelleri) repre-
sented 0.86% among crustaceans.
Variations in the diet according to sex and size
Results revealed that females consumed a
greater amount of food than males, both in num-
ber and weight (Figure 3 A). Statistically signifi-
cant differences between sexes were observed in
both the number (Mann-Whitney, W = 8579; p=
0.006), and weight (Mann-Whitney, W = 9910; p
< 0.001) of prey consumed. Size groups con-
sumed the same amount of prey in number but
not in weight, being size group III the category
consuming the greatest weight of prey (Figure 3
B). Statistical analysis indicated no significant
differences in number of prey consumed by size
groups (Kruskal-Wallis, H = 4.74, p = 0.192) and
significant differences in weight of prey
(Kruskal-Wallis, H = 39.14, p< 0.001).
Pelagic fish were by far the predominant prey
category both in number and weight in stomachs
of all sex and size groups (Figure 4 A and B). The
second most important prey category for group I
was crustaceans, while benthic and demersal fish
(number and weight) for groups II and III (Figure
4 B). Consumption of crustaceans was negligible
across specimens larger than 47 cm LT.
Feeding strategy
Based on Amundsen’s graphical method, P.
patagonicus presented a specialist type strategy
71
TROCCOLI ET AL.: DIET COMPOSITION OF PATAGONIAN FLOUNDER
Figure 2. Cumulative number of prey categories of Patagonian flounder Paralichthys patagonicus as a function of stomachs
sampled with prey content, arranged by sex or size group. Group I = 23-34 cm LT, Group II = 35-47 cm LT, and Group
III = > 47 cm LT. Mean values are denoted by points and standard deviation by error bars. Stomachs with only bony fish
and/or unidentified rests were excluded from this analysis.
1
2
3
4
5
0 50 100 150 200 250
1
2
3
4
5
0 50 100 150
1
2
3
4
5
0 20406080
1
2
3
4
5
0 10203040
1
2
3
4
5
0 50 100 150
1
2
3
4
5
0204060
Number of stomachs
Number of prey categories
All Females Males
Group I Group II Group III
due to the consumption of E. anchoita and T. lath-
ami as main prey items (Figure 5). Argentine
anchovy was the most selected prey among both
female and male groups (Figure 5). Juvenile sizes
of flounder specialized only on E. anchoita,
whereas intermediate sizes on E. anchoita and T.
lathami, and larger sizes on E. anchoita, T. latha-
mi and R. brasiliensis (Figure 5).
72 MARINE AND FISHERY SCIENCES 35 (1): 67-80 (2022)
Table 1. Diet composition of Patagonian flounder (Paralichthys patagonicus) caught within the Argentine-Uruguayan Coastal
Ecosystem (AUCE). Frequency of occurrence (%FO), number (%N), total wet weight (%W), and Index of Relative
Importance (%IRI) were indicated and expressed in percentages. TL = trophic level.
Prey TL %N %FO %W %IRI
Chordata
Osteichthyes 88.51 87.18 96.53 98.73
Conger orbignyanus 3.40 1.68 2.21 1.68 0.16
Cynoscion guatucupa 3.74 3.36 4.41 6.41 0.97
Dules auriga 3.49 1.40 1.47 2.91 0.14
Engraulis anchoita 2.73 52.94 37.60 36.62 74.25
Menticirrhus americanus 3.73 0.28 0.37 0.04 0.00
Mullus argentinae 3.73 0.84 1.10 0.36 0.03
Prionotus nudigula 3.73 0.28 0.37 0.27 0.00
Raneya brasiliensis 3.73 7.28 9.19 13.89 4.18
Symphurus spp. 3.73 0.28 0.37 2.30 0.02
Trachurus lathami 3.51 18.21 18.12 26.17 18.22
Umbrina canosai 3.73 1.12 1.47 2.57 0.12
Urophycis brasiliensis 3.80 0.84 1.10 0.68 0.04
Remains - - 9.40 2.63 0.60
Chondrichthyes - 0.28 0.37 0.32 0.00
Rajidae 3.59 0.28 0.37 0.32 0.00
Mollusca
Cephalopoda - 3.08 3.41 2.31 0.35
Loligo sanpaulensis 3.04 2.80 3.35 2.09 0.35
Octopus spp. 3.20 0.28 0.37 0.22 0.00
Arthropoda
Crustacea - 8.13 8.20 0.71 0.91
Grapsidae 2.00 1.68 1.10 0.03 0.04
Heterosquilla platensis 2.00 0.56 0.74 0.26 0.01
Leurocyclus tuberculosus 2.00 0.28 0.37 0.00 0.00
Pinixa patagonica 2.00 0.28 0.37 0.00 0.00
Pleoticus muelleri 2.20 5.33 5.62 0.42 0.86
Unidentified remains - - 0.84 0.13 0.01
Trophic level
Estimated TL for the population of P. patago-
nicus between 2009 and 2010 was 4.16, with
females presenting a value of 4.18 and males a
value of 4.10.
DISCUSSION
Patagonian flounder diet presented 20 prey
items and was specialized in pelagic fish. The
main consumed species were E. anchoita, fol-
lowed by T. lathami and R. brasiliensis. This
study supports previous observations that P.
patagonicus is an ichthyophagous predator,
which bases its diet preferentially on E. anchoi-
ta, allowing it to be allocated as a tertiary con-
sumer in the AUCE food web. The number of
stomachs analysed was statistically adequate to
describe the diet of P. patagonicus. Only 33% of
the analysed specimens presented food in their
stomachs, which is consistent with other studies
on ichthyophagous bony fishes and flounder
species (Carneiro 1995; Sánchez and Díaz de
Astarloa 1999; Link et al. 2002). A high number
of empty stomachs could be a consequence of
fish suffering stress or water pressure differ-
ences during their extraction from the aquatic
73
TROCCOLI ET AL.: DIET COMPOSITION OF PATAGONIAN FLOUNDER
Figure 3. Diet composition (in number and wet weight of prey) of Patagonian flounder Paralichthys patagonicus arranged by
sex (A) and size groups (B). Group I = 23-34 cm LT, Group II = 35-47 cm LT, and Group III = > 47 cm LT. Asterisks
indicate significant differences.
0
1
2
Number of prey
0
1
2
3
0
10
20
30
Male Female
Wet weight of prey (g)
0
10
20
30
40
50
Group I Group III
AB
*
**
**
*
*
**
*
**
***
Group II
environment, a process manifested with the
stomach eversion or regurgitation of contents
(Bowman 1986). In particular, regurgitations
could be one factor explaining why the propor-
tion of individuals with stomach content did not
exceed 1/3 of the total, as it was repeatedly
observed in P. patagonicus being caught on
fishing gear (pers. obs. A Milessi). In addition,
the samples used in this study came from bot-
tom trawl fishing operations which are less like-
ly to have associated bias regarding regurgita-
tion rate, compared to other fishing gears (e.g.
longlines).
Patagonian flounder bases its diet primarily on
bony fish. Ichthyophagy seems to be a character-
istic of intermediate and large-sized flounders
like the species studied here, e.g., P. dentatus
(Link et al. 2002), P. orbignyanus (Norbis and
Galli 2004; López Cazorla and Forte 2005);
Syacium micrurum (Marques et al. 2009), and
Cyclopsetta panamensis (Amezcua and Portillo
2010), with a less important presence of crus-
taceans and molluscs in the diet. This character-
istic is common in P. patagonicus from both
southern Brazil (Carneiro 1995) and AUCE
(Sánchez and Díaz de Astarloa 1999). However,
P. patagonicus have changed past feeding pat-
terns observed in the AUCE between years 1992-
1993, when the diet was based predominantly on
R. brasiliensis, followed by T. lathami and to a
lesser extent by E. anchoita (Sánchez and Díaz
de Astarloa 1999). This situation was also
observed in other piscivorous fish like Percophis
brasiliensis (Milessi and Marí 2012) and
74 MARINE AND FISHERY SCIENCES 35 (1): 67-80 (2022)
Figure 4. Prey type composition of Patagonian flounder Paralichthys patagonicus arraged by sex (A) and size groups (B). Values
are expressed as percentage of total number and wet weight of main prey categories. Group I = 23-34 cm LT, Group II
= 35-47 cm LT, and Group III = > 47 cm LT.
Crustaceans Molluscs Benthic fish Demersal fish Pelagic fish
Female Male
0
20
40
60
80
Total number of prey (%)
Female Male
0
20
40
60
80
Total wet weight of prey (%)
Group I Group II Group III
Group I Group II Group III
AB
Squalus acanthias (Belleggia et al. 2012), which
would reflect a change in the structure of the
AUCE trophic web, mainly due to fishing
exploitation (Jaureguizar and Milessi 2008).
Another explanation for the observed shift
between past and present diet may be due to a
variation in the spatial operability of the coastal
fishing fleet, which currently operates in areas
that were not previously used, and consequently,
prey captured by P. patagonicus in the present
could be different from those found in stomachs
from previous studies.
Statistical differences in diet between sexes
found in P. patagonicus are likely a result of
females consuming more prey both in number
and weight because they attain larger sizes than
males (Riestra 2010), and therefore have a higher
consumption rate, greater stomach capacity and
higher energy requirements (e.g. Scharf et al.
2000; Vögler et al. 2009). Although not possible
to evaluate in this study, it has been proposed
that there is a spatial overlap between sexes
(Riestra 2010), suggesting that females and
males would feed on the same prey but in differ-
ent quantities. This last suggestion is in line with
a study carried out on the Uruguayan coast,
where no differences were observed in the prey
type consumption between sexes of P. patagoni-
cus (Correa 2011).
Furthermore, Amundsen graphical results indi-
cated that P. patagonicus is specialized in con-
suming E. anchoita and T. lathami, and this pref-
75
TROCCOLI ET AL.: DIET COMPOSITION OF PATAGONIAN FLOUNDER
E. anchoita
T. lathami
E. anchoita
E. anchoita
T. lathami
E. anchoita
T. lathami
E. anchoita
T. lathami
E. anchoita
R. brasiliensis
T. lathami
Group I Group II Group III
Total Females Males
0 25 50 75 100 0 25 50 75 100 0 255075100
0
25
50
75
100
0
25
50
75
100
Abundance (%)
Frequency of occurrence (%)
Figure 5. Abundance (% total wet weight) versus frequency of occurrence (% in number) of each prey found in stomachs of
Patagonian flounder (Paralichthys patagonicus) arranged by sex and size. Group I = 23-34 cm LT, Group II = 35-47 cm
LT, and Group III = > 47 cm LT. The analysis is based on the method in Amundsen et al. (1996) to determine feeding
strategies of fish. Each prey is represented by a unique symbol; only names from abundant and frequently occurring prey
are shown to facilitate visualization. Darker colours in symbols and prey names indicate higher abundance and frequency
of occurrence, respectively.
erence increased with size. This was expected
given that E. anchoita is the most abundant fish
species in the AUCE with a biomass estimated
between 1,000,000 and 5,000,000 t (Hansen and
Madirolas 1996; Hansen et al. 2007; Pájaro et al.
2009), it represents the main food source not only
for P. patagonicus but also for other teleosts
(Bergonzi 1997; Sánchez 2002; Giberto 2008,
Milessi and Marí 2012) and chondrichthyans
(Vögler et al. 2003; Belleggia et al. 2011), as
well as seabirds (Silva et al. 2000; Mauco et al.
2001; Mauco and Favero 2004; Barquete et al.
2008) and marine mammals (Rodríguez et al.
2002; Suárez et al. 2005). Dense shoals formed
near the seafloor by E. anchoita as a result of
daily vertical migrations (Hansen 2004), would
allow predation by P. patagonicus in the AUCE.
Therefore, P. patagonicus specialization on E.
anchoita should be interpreted with caution
because it is possible that the high consumption
arises from the abundance of prey in the habitats
used by the predator.
Molluscs and crustaceans were more con-
sumed by P. patagonicus of smaller sizes than
larger sizes. This behaviour was also observed in
other congeners like P. isosceles, (García 1987)
and P. orbignyanus (López Cazorla and Forte
2005), in which smaller sizes preyed more on
crustaceans and molluscs. This pattern is proba-
bly explained by the ability of smaller fish sizes
to capture small and less motile prey (e.g., mol-
luscs and crustaceans), while bigger and more
dynamic prey are captured as individuals reach
greater size and experience in predation (Link et
al. 2014).
The increase in the size of the consumed prey
can be attributed to the increase in the size of the
predators mouth (Stoner and Livingston 1984;
Mittelbach and Persson 1998), or to the elevated
metabolic requirement for movement, growth
and reproduction that is supported by the con-
sumption of prey with higher energy value
(Scharf et al. 2000). In this sense, pelagic fish
have a higher lipid content and therefore a higher
amount of calories (Massa et al. 2013); e.g. E.
anchoita has a value of 129 kcal and T. lathami
of 149 kcal, whereas the squid L. sanpaulensis of
80 kcal and Argentine red shrimp P. muelleri of
97 kcal (Mendez et al. 1996; Celik 2008). Thus,
as flounders grow, they need to feed on prey that
meets their basic energy requirements, which
would be achieved with the increasing consump-
tion of small pelagic fish.
Finally, the estimated TL (4.16) allowed the
identification of the Patagonian flounder as a ter-
tiary ichthyophagous consumer, a position similar
to that outlined in the southern coasts of Brazil
(TL = 4.18; Carneiro 1995). It represents an
important predator of the Argentine anchovy (E.
anchoita), which is the pelagic species with the
highest abundance and widest geographic distri-
bution in the Southwest Atlantic, ranging from
24° S to 48° S, with biomass estimates in the
order of 5,000,000 t (Hansen et al. 2010). This
characteristic highlights the role of P. patagoni-
cus in regulating the abundance of its prey,
among which the main prey not only represents
the sustenance of a large number of marine fish,
mammals and birds but it also contributes to be
an important fishery resource in the AUCE
(Hansen et al. 2010).
ACKNOWLEDGMENTS
Authors thank the people involved in the proj-
ect Especies Demersales Costeras from Instituto
Nacional de Investigación y Desarrollo Pesquero
(INIDEP, Argentina) for their kind predisposition
to prepare this work. To colleagues A. Jau-
reguizar, J. Waessle and J. Rodriguez for their
contributions and collaboration. A.C.M. wants to
acknowledge support from ‘Un Solo Mar project.
We thank the two anonymous referees who pro-
vided substantial improvements to the manu-
script. This work is part of the undergraduate the-
sis of G. Troccoli. INIDEP Contribution no 2257.
76 MARINE AND FISHERY SCIENCES 35 (1): 67-80 (2022)
REFERENCES
AMEZCUA F, PORTILLO A. 2010. Hábitos alimenti-
cios del lenguado panámico Cyclopsetta
panamensis (Paralichthyidae) en el Sureste
del Golfo de California. Rev Biol Mar
Oceanogr. 45: 335-340.
AMUNDSEN PA, GABLER HM, STALDVIK FJ. 1996.
A new approach to graphical analysis of feed-
ing strategy from stomach contents data-mod-
ification of the Costello (1990) method. J Fish
Biol. 48: 607-614.
BARQUETE V, B UGONI L, VOOREN CM. 2008. Diet
of Neotropic cormorant (Phalacrocorax
brasilianus) in an estuarine environment. Mar
Biol. 153: 431-443.
BELLEGGIA M, FIGUEROA DE, SÁNCHEZ F, BRE-
MEC C. 2011. The feeding ecology of Mustelus
schmitti in the southwestern Atlantic: geo-
graphic variations and dietary shifts. Environ
Biol Fish. 95: 99-114.
BELLEGGIA M, FIGUEROA D, SÁNCHEZ F, BREMEC
C. 2012. Long-term changes in the spiny dog-
fish (Squalus acanthias) trophic role in the
southwestern Atlantic. Hydrobiologia. 684:
57-67.
BERGONZI C. 1997. Interrelaciones tróficas de
algunas especies de peces del área costera de
la Provincia de Buenos Aires [tesis de licen-
ciatura]. Mar del Plata: Facultad de Ciencias
Exactas y Naturales, Universidad Nacional de
Mar del Plata, 27 p.
BOWMAN RE. 1986. Effect of regurgitation on
stomach content data of marine fishes. Envi-
ron Biol Fish. 16 (1): 171-181.
CARNEIRO MH. 1995. Reprodução e alimentação
dos linguados Paralichthys patagonicus e
Paralichthys orbignyanus (Pleuronectofor-
mes: Bothidae), no Rio Grande do Sul, Brasil
[tesis de mestrado]. Río Grande: Universidad
de Río Grande. 181 p.
CAROZZA C, LASTA C, RUARTE C, COTRINA C,
MIANZAN H, ACHA M. 2004. Corvina rubia
(Micropogonias furnieri). In: SÁNCHEZ RP,
BEZZI S, editors. El Mar Argentino y sus recur-
sos pesqueros. Tomo 4. Los peces marinos de
interés pesquero. Caracterización biológica y
evaluación del estado de explotación. Mar del
Plata: Instituto Nacional de Investigación y
Desarrollo Pesquero (INIDEP). p. 255-270.
CELIK M. 2008. Seasonal changes in the proxi-
mate chemical compositions and fatty acids of
chub mackerel (Scomber japonicus) and horse
mackerel (Trachurus trachurus) from the
north eastern Mediterranean Sea. Int J Food
Sci Tech. 5: 933-938.
CORREA P. 2011. Estimación y análisis del consu-
mo de alimento en peces del Río de la Plata y
Costa Atlántica Uruguaya [tesis de grado].
Facultad de Ciencias, Universidad de la Repú-
blica. 46 p.
CORTÉS E. 1997. A critical review of methods of
studying fish feeding based on analysis of
stomach contents: application to elasmo-
branches fishes. Can J Fish Aquat Sci. 54:
726-738.
CORTÉS E. 1999. Standardized diet compositions
and trophic levels in sharks. ICES J Mar Sci.
56: 707-717.
[CTMFM] COMISIÓN TÉCNICA MIXTA DEL FRENTE
MARÍTIMO. 2021. Desembarques del área del
tratado. [accessed 2021 November].
http://www.ctmfm.org/archivos-de-captura/.
DÍAZ DE ASTARLOA JM. 2005. Osteología craneal
comparada de tres especies de lenguado del
Género Paralichthys (Pleuronectiformes,
Paralychthyidae) del Atlántico suroccidental.
Rev Chil Hist Nat. 78: 343-391.
ELTON C. 1927. Animal ecology. New York:
Macmillan. 209 p.
FABRÉ NN. 1992. Análisis de la distribución y
dinámica poblacional de lenguados de la Pro-
vincia de Buenos Aires (Pisces, Bothidae)
[tesis doctoral]. Mar del Plata: Facultad de
Ciencias Exactas y Naturales, Universidad
Nacional de Mar del Plata. 266 p.
77
TROCCOLI ET AL.: DIET COMPOSITION OF PATAGONIAN FLOUNDER
FERNÁNDEZ ARÁOZ NC, LAGOS N, CAROZZA C.
2010. Asociación Íctica Costera Bonaerense
“Variado Costero”. Capturas declaradas por la
flota comercial argentina durante el año 2009.
Inf Téc INIDEP Nº 34/2010. 32 p.
FROESE R, PAULY D. 2019. FishBase. www.fish-
base.org/.
GARCÍA M. 1987. Pleuronectiformes de la Argen-
tina, IV. Alimentación de Paralichthys isosce-
les (Bothidae, Paralichthinae). Rev Mus La
Plata (Nueva Serie) (Secc Zool). 21: 111-125.
GIBERTO DA. 2008. Estructura de la comunidad
bentónica y ecología trófica de Scienidae
(Phisces; Osteichthyes) en el Estuario del Río
de la Plata [tesis doctoral]. Universidad
Nacional del Comahue. 224 p.
GUERRERO RA, ACHA M, FRAMIÑAN MB, LASTA
C. 1997. Physical oceanography of the Río de
la Plata Estuary, Argentina. Cont Shelf Res.
17: 727-742.
HANSEN JE. 2004. Anchoíta (Engraulis anchoita).
In: SÁNCHEZ RP, BEZZI S, editors. El Mar
Argentino y sus recursos pesqueros. Tomo 4.
Los peces marinos de interés pesquero. Carac-
terización biológica y evaluación del estado de
explotación. Mar del Plata: Instituto Nacional
de Investigación y Desarrollo Pesquero
(INIDEP). p. 101-115.
HANSEN JE, BURATTI CC, GARCIARENA AD. 2010.
Diagnóstico de la población de anchoíta al sur
de 41° S mediante un modelo de producción
estructurado por edades y estimación de cap-
turas biológicamente aceptables en el año
2010. Inf Téc Of INIDEP Nº 6/2010. 16 p.
HANSEN JE, GARCIARENA AD, BURATTI CC. 2007.
Evolución entre los años 1990 y 2006 de la
población de anchoita (Engraulis anchoita) al
norte de 41° S, y estimación de una captura
biológicamente aceptable durante el año 2007.
Inf Téc INIDEP Nº 53/2007. 23 p.
HANSEN JE, MADIROLAS A. 1996. Distribución,
evaluación acústica y estructura poblacional
de la anchoita. Resultados de las campañas del
año 1993. Rev Invest Desarr Pesq. 10: 5-21.
JAUREGUIZAR AJ, MILESSI AC. 2008. Assessing
the sources of the fishing down marine food
web process in the Argentinean-Uruguayan
Common Fishing Zone. Sci Mar. 72: 25-36.
KOEN ALONSO M, CRESPO EA, GARCÍA NA,
PEDRAZA SN, COSCARELLA M. 1998. Diet of
dusky dolphins, Lagenorhynchus obscurus, in
waters of Patagonia, Argentina. Fish Bull. 96:
366-374.
LASTA C, BREMEC C, MIANZÁN H. 1998. Áreas
ícticas costeras en la Zona Común de Pesca
Argentino-Uruguaya (ZCPAU) y en el litoral
de la provincia de Buenos Aires. In: LASTA C,
editor. Resultados de una campaña de evalua-
ción de recursos demersales costeros de la
Provincia de Buenos Aires y litoral Uruguayo.
Noviembre, 1994. INIDEP Inf Téc. 21: 91-
101.
LAWTON JH, PIMM SL. 1978. Population dynam-
ics and the length of food chains (reply).
Nature. 272: 190.
LINDEMAN RL. 1942. The trophic-dynamic aspect
of ecology. Ecology. 23: 399-418.
LINK JS, BOLLES K, MILLIKEN CG. 2002. The
feeding ecology of flatfish in the Northwest
Atlantic. J Northw Atl Fish Sci. 30: 1-17.
LINK JS, SMITH BE, PACKER DB, FOGARTY MJ,
LANGTON RW. 2014. The trophic ecology of
flatfishes. In: GIBSON RN, NASH RDM, GEF-
FEN AJ, VAN DER VEER HW, editors. Flatfis-
hes: biology and exploitation. Hoboken: John
Wiley & Sons p. 283-313.
LÓPEZ CAZORLA A, FORTE S. 2005. Food and
Feeding Habits of Flounder Paralichthys
orbignyanus (Jenyns, 1842) in Bahía Blanca
Estuary, Argentina. Hydrobiologia. 549: 251-
257.
LUCAS AJ, GUERRERO R, MIANZAN H, ACHA M,
LASTA C. 2005. Coastal oceanographic
regimes of the Northern Argentine Continental
Shelf (34°-43° S). Estuar Coast Shelf Sci. 65:
405-420.
[MAGYP] MINISTERIO DE AGRICULTURA GANADE-
RÍA Y PESCA. 2021. Desembarques de capturas
78 MARINE AND FISHERY SCIENCES 35 (1): 67-80 (2022)
marítimas totales. [accessed 2021 November].
https://www.magyp.gob.ar/sitio/areas/pesca_
maritima/desembarques/.
MARQUES JF, TEIXEIRA CM, PINHEIRO A, PESCHKE
E, CABRAL HN. 2009. A multivariate approach
to the feeding ecology of the Channel floun-
der, Syacium micrurum (Pisces, Pleuronecti-
formes), in Cape Verde, Eastern Atlantic.
Cienc Mar. 35: 15-27.
MASSA A, HOZBOR N, COLONELLO J. 2004. Situa-
ción actual y avances en el estudio de los
peces cartilaginosos. Inf Téc Int DNI-INIDEP
Nº 57/2004. 18 p.
MASSA AE, FERNÁNDEZ COMPÁS AS, PENNISI
FARELL SC, MANCA EA. 2013. Composición
química y perfil de ácidos grasos de la ancho-
íta bonaerense en función del tamaño de los
ejemplares y la zona de pesca. Rev Invest
Desarr Pesq. 23: 161-174.
MAUCO L, FAVERO M. 2004. Diet of the common
tern (Sterna hirundo) during the nonbreeding
season in Mar Chiquita Lagoon, Buenos Aires,
Argentina. Ornit Neot. 15: 121-131.
MAUCO L, FAVERO M, BÓMS. 2001. Food and
feeding biology of the Common Tern during
the nonbreeding season in Samborombón Bay,
Buenos Aires, Argentina. Waterbirds. 24: 89-
96.
MENDEZ E, GONZÁLEZ R, INOCENTE G, GIUDICE
H, GROMPONE M. 1996. Lipid content and
fatty Acid composition of fillets of six fishes
from the Rio de la Plata. J Food Compos Anal.
9: 163-170.
MENNI RC. 1983. Los peces en el medio marino.
Buenos Aires: Estudio SIGMA. 169 p.
MILESSI AC. 2008. Modelación ecotrófica para el
Ecosistema Costero Bonaerense (34º-41ºS)
años ’81-83. Inf Téc INIDEP Nº 8/2008. 55 p.
MILESSI AC, MARÍ N. 2012. Ecología trófica del
pez palo, Percophis brasiliensis (Quoy & Gai-
mard, 1825) en el Ecosistema Costero Argen-
tino-Uruguayo (34-41º S). Inf Invest INIDEP
Nº 65/2012. 12 p.
MITTELBACH GG, PERSSON L. 1998. The ontoge-
ny of piscivory and its ecological conse-
quences. Can J Fish Aquat Sci. 55: 1454-1465.
NORBIS W, GALLI O. 2004. Feeding habits of the
flounder Paralichthys orbignyanus (Valenci-
ennes, 1842) in a shallow coastal lagoon of the
southern Atlantic Ocean: Rocha, Uruguay.
Cienc Mar. 30: 619-626.
ODUM WE, HEALD EJ. 1975. The detritus-based
food web of an estuarine mangrove communi-
ty. In: CRONIN LE, editor. Estuarine research.
Vol. 1. New York: Academic Press. p. 265-
286.
PÁJARO M, HANSEN JE, LEONARDUZZI E, GARCIA-
RENA AD. 2009. Biomasa de los reproductores
de la población bonaerense de anchoita
(Engraulis anchoita) en el año 2008: estima-
ción mediante el método de producción diaria
de huevos. Inf Téc Of INIDEP Nº 29/2009. 19
p.
PINKAS LM, OLIPHANT S, IVERSON ILK. 1971.
Food habits of albacore, bluefin tuna and
bonito in Californian waters. Calif Fish Game.
152: 1-105.
RICO MR. 2010. Pesquería de lenguados en el
ecosistema costero bonaerense al norte de 39º
S. Frente Marít. 21: 129-135.
RICO MR, LAGOS AN. 2010. Lenguados del siste-
ma costero bonaerense. Herramientas para la
identificación de especies. Inf Téc Of INIDEP
58/2010. 15 p.
RICO MR, PERROTTA RG. 2009. Análisis de la
captura y el esfuerzo de pesca aplicado al
grupo lenguados en el área costera bonaeren-
se. Período 1981-2005. Inf Téc Of INIDEP
35/2009. 22 p.
RIESTRA MC. 2010. Edad, crecimiento e influen-
cia del ambiente en la distribución de Para-
lichthys patagonicus en el Sistema Costero del
Atlántico Sudoccidental (34°-41° S) [tesis de
grado]. Mar del Plata: Facultad de Ciencias
Exactas y Naturales, Universidad Nacional de
Mar del Plata. 55 p.
RIESTRA MC, DÍAZ DE ASTARLOA JM, VIEIRA JP,
BURATTI CC, IRIGOYEN AJ, LANDAETA M,
79
TROCCOLI ET AL.: DIET COMPOSITION OF PATAGONIAN FLOUNDER
HÜNE M. 2020. Paralichthys patagonicus. The
IUCN Red List of Threatened Species 2020:
e.T195089A165017727.
RODRÍGUEZ D, RIVERO L, BASTIDA R. 2002. Feed-
ing ecology of the Franciscana (Pontoporia
blainvillei) in marine and estuarine waters of
Argentina. LAJAM. 1: 77-94.
SÁNCHEZ MF. 2002. Alimentación de la merluza
(Merluccius hubbsi) en la Zona Común de
Pesca Argentino-Uruguaya entre los años
1995 y 2000. Inf Téc Int-DNI INIDEP
118/2002. 14 p.
SÁNCHEZ MF, DÍAZ DE ASTARLOA JM. 1999. Ali-
mentación del lenguado Paralichthys patago-
nicus. 8º COLACMAR, Congreso Latinoame-
ricano Ciencias del Mar. Trujillo, Perú. p. 186-
188.
SCHARF FS, JUANES F, ROUNTREE RA. 2000. Pred-
ator size-prey size relationships of marine fish
predators: interespecific variation and effects
of ontogeny and body size trophic-niche
breadth. Mar Ecol Prog Ser. 208: 229-248.
SILVA M, BASTIDA R, DARRIEU C. 2000. Dieta de
la gaviota cocinera (Larus dominicanus) en
zonas costeras de la provincia de Buenos
Aires, Argentina. Ornit Neot. 11: 331-339.
STERNER RW, BAJPAI A, ADAMS T. 1997. The
enigma of food chain length: absence of theo-
retical evidence for dynamic constraints. Ecol-
ogy. 78: 2258-2262.
STONER AW, LIVINGSTON RJ. 1984. Ontogenetic
patterns in diet and feeding morphology in
sympatric sparid fishes from seagrass mead-
ows. Copeia. 1984 (1): 174-187.
SUAREZ AA, SANFELICE D, CASSINI MH, CAPPOZ-
ZO HL. 2005. Composition and seasonal vari-
ation in the diet of the South American Sea
Lion (Otaria flavecens) from Quequén,
Argentina. LAJAM. 4 (2): 163-174.
VÖGLER R, MILESSI AC, DUARTE LO. 2009.
Changes in trophic level of Squatina guggen-
heim with increasing body length: relation-
ships with type, size and trophic level of its
prey. Environ Biol Fish. 84: 41-52.
VÖGLER R, MILESSI AC, QUIÑONES RA. 2003.
Trophic ecology of Squatina guggenheim on
the continental shelf off Uruguay and northern
Argentina. J Fish Biol. 62: 1254-1267.
WAESSLE JA, LASTA C, FAVERO M. 2003. Otolith
morphology and body size relationships for
juvenile Sciaenidae in the Río de la Plata Estu-
ary (35-36°S). Sci Mar. 67: 233-240.
80 MARINE AND FISHERY SCIENCES 35 (1): 67-80 (2022)