2016. Hypersaline habitats and halophilic
microorganisms. Maejo Int J Sci Technol. 10:
330-345.
BATISTA SB, MOUNTEER AH, AMORIM FR, TOTO-
LA MR. 2006. Isolation and characterization of
biosurfactant/bioemulsifier-producing bacte-
ria from petroleum contaminated sites. Biore-
sour Technol. 97: 868-875.
BOGARDT AH, HEMMINGSEN BB. 1992. Enumera-
tion of phenanthrene-degrading bacteria by an
overlayer technique and its use in evaluation
of petroleum-contaminated sites. Appl Envi-
ron Microbiol. 58: 2579-2582.
BRZESZCZ J, KASZYCKI P. 2018. Aerobic bacteria
degrading both n-alkanes and aromatic hydro-
carbons: an undervalued strategy for metabol-
ic diversity and flexibility. Biodegradation.
29: 359-407.
CABRAL H, FONSECA V, SOUSA T, COSTA LEAL M.
2019. Synergistic effects of climate change
and marine pollution: an overlooked interac-
tion in coastal and estuarine areas. Int J Envi-
ron Res. 16: 2737.
CAPPELLO S, CARUSO G, ZAMPINO D, MONTICELLI
LS, MAIMONE G, DENARO R, TRIPODO B,
TROUSSELLIER M, YAKIMOV MM, GIULIANO L.
2007. Microbial community dynamics during
assays of harbour oil spill bioremediation: a
microscale simulation study. J Appl Micro-
biol. 102: 184-194.
COELHO FJ, CLEARY DFR, COSTA R, FERREIRA M,
POLONIA ARM, SILVA AMS, SIMOES MMQ,
OLIVEIRA V, GOMES NCM. 2016. Multitaxon
activity profiling reveals differential microbial
response to reduced seawater pH and oil pol-
lution. Mol Ecol. 25: 4645-4659.
COELHO FJ, SANTOS AL, COIMBRA J, ALMEIDA A,
CUNHA A, CLEARY DFR, CALADO R, GOMES
NCM. 2013. Interactive effects of global cli-
mate change and pollution on marine
microbes: the way ahead. Ecol Evol. 3: 1808-
1818.
CORTI MONZÓN G, NISENBAUM M, HERRERA SEITZ
MK, MURIALDO SE. 2018. New findings
on aromatic compounds’ degradation and their
metabolic pathways, the biosurfactant produc-
tion and motility of the halophilic bacterium
Halomonas sp. KHS3. Curr. Microbiol.
75: 1108-1118.
CUI Z, LAI Q, DONG CH, SHAO Z. 2008. Biodiver-
sity of polycyclic aromatic hydrocarbon-
degrading bacteria from deep sea sediments of
the Middle Atlantic Ridge. Environ Microbiol.
10: 2138-2149.
DELL’ANNO F, BRUNET C, VAN ZYL LJ, TRINDADE
M, GOLYSHIN PN, DELL’ANNO A, IANORA A,
SANSONE C. 2020. Degradation of hydrocar-
bons and heavy metal reduction by marine
bacteria in highly contaminated sediments.
Microorganisms. 8: 1402.
DENG MC, LIJ, LIANG FR, YIM, XUXM, YUAN
JP, PENG J, WUCF, WANG JH. 2014. Isolation
and characterization of a novel hydrocarbon-
degrading bacterium Achromobacter sp.
HZ01 from the crude oil-contaminated seawa-
ter at the Daya Bay, Southern China. Mar Pol-
lut Bull. 83: 79-86.
DEVEREUX R, WILLIS S. 1995. Amplification of
ribosomal RNA sequences. In: AKKERMANS
ADL, VAN ELSAS JD, DEBRUIJN FJ, editors.
Molecular microbial ecology manual. Vol.
3.3.1. London: Kluwer Academic Publishers.
p. 1-11.
DONG C, BAI X, SHENG H, JIAO L, ZHOU H, SHAO
Z. 2015. Distribution of PAHs and the PAH-
degrading bacteria in the deep-sea sediments
of the high-latitude Arctic Ocean. Biogeo-
sciences. 12: 2163-2177.
ETKIN DS. 2010. Worldwide analysis of in-port
vessel operational lubricant discharges and
leakages. Proceedings of 33rd AMOP Tech
Semin Environ Contam Response. 1: 529-553.
FALCÓN LI, NOGUEZ AM, ESPINOSA-ASUAR L,
EGUIARTE LE, SOUZA V. 2008. Evidence of
biogeography in surface ocean bacterioplank-
ton assemblages. Mar Genom. 1: 55-61.
GASPEROTTI AF, STUDDERT CA, REVALE S, HER-
RERA SEITZ MK. 2015. Draft genome sequence
33
PERESSUTTI: HYDROCARBON DEGRADING BACTERIA AT EPEA STATION